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Abstract Nonredundant and exhaustive generation of stereoisomers of a chemical
compound with a specified constitution is one of the important tools for molecular
structure elucidation and molecular design. In this paper, we deal with chemical com-
pounds composed of carbon, hydrogen, oxygen and nitrogen atoms whose graphical
structures are tree-like graphs because these compounds are most fundamental, and
consider stereoisomers that can be generated by asymmetric carbon atoms and dou-
ble bonds between two adjacent carbon atoms. Based on dynamic programming, we
propose an algorithm of generating all stereoisomers without duplication. We treat
a given tree-like graph as a tree rooted at its structural center. Our algorithm first
computes recursively the numbers of stereoisomers of the subgraphs induced by the
descendants of each vertex, and then constructs each stereoisomer by backtracking the
process of computing the numbers of stereoisomers. Our algorithm correctly counts
the number of stereoisomers in O(n) time and space, and correctly enumerates all
the stereoisomers in O(n) space and in O(n) time per stereoisomer, where n is the
number of atoms in a given structure. The source code of the program implementing
the proposed algorithm is freely available for academic use upon request.
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1 Introduction

One of the most fundamental and important problems in chemoinformatics is nonre-
dundant and exhaustive enumeration of isomers/stereoisomers because it plays core
roles in structure elucidation and molecular design [1]. Since Cayley studied enumera-
tion of alkanes in the 19th century [2], extensive studies have been done, which include
Pólya’s seminal work on counting the number of isomers using group theory [3,4].
Two chemical compounds with the same isomer may have different three-dimensional
configurations due to asymmetry around carbon atoms and many other structural asym-
metries. Stereoisomers often exhibit different chemical properties, and synthesis of a
specific stereoisomer remains a challenging issue in chemistry. Hence, enumeration
of stereoisomers is important as well as enumeration of isomers.

In this paper, we consider stereoisomers caused only by asymmetry around carbon
atoms. Such stereoisomers might be further divided into more detailed classes accord-
ing to their three-dimensional conformations and stabilities [5–7]. However, if the
combinatorial structures based on asymmetry around carbon atoms are different, then
the stereoisomers are considered different in any definition. Then stereoisomers caused
only by asymmetry around carbon atoms are fundamental and practically important.
As to enumeration of such stereoisomers, several methods have been proposed [8–10],
which mostly follow the work by Nourse [11]. Given a chemical compound with m
stereocenters, these methods first create a list of all 2m combinations of the two choices
of asymmetries around each carbon atom, and remove each set S of combinations that
represent the same stereoisomer leaving one of them as their representative. Although
such a set S of combinations can be constructed in O(|S|m) time by a method on
permutation groups called the configuration groups, the time and space complexity
of the entire algorithm is �(2m). Gugisch and Rücker proposed a somewhat differ-
ent approach using an orientation function [5], following a suggestion by Dress et
al. [12]. Tratch et al. proposed a similar but different approach using the concept of
ladder of combinatorial objects [13]. Though these approaches can handle more gen-
eral conformers than those by Nourse and others, it seems that these are less efficient.

Furthermore, mathematical proofs for the correctness of some of existing methods
are not fully provided, where the correctness means that an algorithm does not miss
any of the stereoisomers and does not output (or count) any of identical structures
multiple times. Therefore, in order to provide examples for checking the validity of
existing programs, Rücker et al. manually counted the number of stereoisomers of
several chemical compounds [14].

In this paper, we focus on tree structured molecules (i.e., acyclic molecules) and
develop algorithms for enumerating stereoisomers with a guaranteed computational
complexity. Differently from the existing approaches based on configuration groups,
we use dynamic programming. Though some recursive formula were derived for count-
ing certain kinds of graphs [15], our dynamic programming method is significantly
different from these approaches because it works for a given structure, does not use the
cycle index, and can explicitly generate all possible stereoisomers. For this, we treat
a given tree structured molecule as a tree rooted at its structural center (i.e., centroid),
and derive recursive formulas for the numbers of stereoisomers of rooted subtrees.
However, it is nontrivial to represent stereoisomers with a mathematically consistent
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form, without which such recursive formulas cannot be derived. The main contribution
of this paper is to give a mathematical representation for stereoisomers by introducing
a new notion, “orientation of carbon circuits,” and to design a dynamic programming
algorithm that counts the total number K of stereoisomers of a given tree based on
the derived recursive formulas and a traceback algorithm that constructs the k-th ste-
reoisomer of the tree for each k = 1, 2, . . . , K , by identifying the stereoisomer of
each subtree corresponding to the k-th stereoisomer. Assuming that each of the four
arithmetic operations can be done in constant time, our algorithm correctly counts the
number K of stereoisomers in O(n) time and space, and correctly enumerates all K
stereoisomers without duplication in O(n) space and in O(n) time per stereoisomer,
where n is the number of atoms in a given tree. The time complexity for counting
is optimal. The time complexity for enumerating all stereoisomers is O(nK ), and
this is also optimal provided that each stereoisomer needs to be output explicitly in
O(n) time. The computational key property to achieve the latter result is an efficient
bijection algorithm, which is required as a subroutine of our enumeration algorithm.
More specifically we show that, given integers p ∈ {1, 2, 3, 4} and n ≥ p, there is an
O(1) time algorithm that delivers the k-th set from the

(n
p

)
sets of p distinct integers

{k1, k2, . . . , kp} ⊆ {1, 2, . . . , n} for a specified integer k ∈ {1, 2, . . . ,
(n

p

)}. We con-
ducted computational experiments to evaluate the practical computation time of the
proposed algorithm. The results confirm that our proposed algorithm is very fast in
practice for both counting and enumeration.

2 Preliminary and problem formulation

2.1 Problem definition

In this paper, we deal with the problem defined as follows.

Input A tree-like chemical graph whose vertex set V consists of carbon, hydrogen,
oxygen and nitrogen atoms. A vertex-numbering n : V → {1, 2, . . . , |V |},
by which the vertices are numbered from 1 to |V |.

Output All the stereoisomers that can be generated by asymmetry around
carbon atoms (the exact definition of stereoisomers in this paper is given in
Sect. 2.4).

We denote a given chemical graph by a simple graph G = (V, E)with a vertex set V
and an edge set E . The vertex set V is partitioned into VC = {v | vis a carbon atom},
VH = {v | vis a hydrogen atom}, VO = {v | vis an oxygen atom} and VN = {v |
vis a nitrogen atom}. We denote |V | = n. The edge set E is partitioned into E1 = {e |
eis a single bond}, E2 = {e | eis a double bond} and E3 = {e | eis a triple bond}.

Informally, we consider that there are two different three-dimensional structures
around a carbon atom v only when one of the following cases occurs:

(i) v is adjacent to four different substructures;
(ii) v is adjacent to a substructure T1 by a double bond and two different substruc-

tures T2 and T3 by single bonds, and T1 is not symmetric along the double
bound; and
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(a) (b)

Fig. 1 a The four directions d0, d1, d2 and d3 around a carbon atom in the three-dimensional space.
b Three-dimensional structures around the asymmetric carbon atom in lactic acid. There are two different
three-dimensional structures around the asymmetric carbon atom (the carbon atom at the center of the
tetrahedron)

(a) (b)

Fig. 2 Three-dimensional structures around a chain of double bonds between two carbon atoms u and v.
The rectangle shows the plane that contains the left two hydrogen atoms x and y. Thick lines indicate edges
on the front side of the plane and dashed lines indicate edges on the back side of the plane

(iii) v is adjacent to two substructures T1 and T2 by double bonds, and each Ti , i =
1, 2 is not symmetric along the double bound.

For example, there are two different configurations around the asymmetric carbon
atom in lactic acid (see Fig. 1b).

We here show our assumption on the three-dimensional structure of a chain of dou-
ble bonds between two carbon atoms u and v such that u is adjacent to two atoms
x and y by single bonds and v is adjacent to two atoms w and z by single bonds, as
shown in Fig. 2. For the number k of double bonds between u and v, we assume that

• x, y, w and z are on the same plane when k is odd; and
• x, y, w and z are not on the same plane when k is even.

For example, Fig. 2a, b illustrate the chain of double bonds of ethylene (k = 1) and
allene (k = 2), respectively. And in the three-dimensional space, we assume that the
double bond between two carbon atoms has two distinct bonds as shown in Fig. 2.
By this, we consider that the carbon atom v with three adjacent atoms has four bonds
connected to v.

Figure 1a illustrates that the three-dimensional structure around a carbon atom with
four or three adjacent atoms forms a regular tetrahedron, where d0, d1, d2 and d3 rep-
resent the directions along the four edges incident to the carbon atom. We define the
configuration around a carbon atom v as a correspondence between the edges incident
to v and di (i = 0, 1, 2, 3), where we do not distinguish two correspondences which
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result in the same stereoisomorphic (stereochemically isomorphic) compounds. The
exact relationship between configurations and stereoisomers will be given in Sect. 2.5.

2.2 Isomorphism of tree-like graphs

Our algorithm first detects the centroid of a given tree-like graph G. For any tree, the
next theorem specifies a structurally unique vertex or edge.

Theorem 1 (Jordan’s theorem [16]) For any tree of n ≥ 1 vertices, exactly one of the
next two statements holds.

1. There exists a unique vertex v∗ such that each of the subtrees obtained by removing
v∗ contains at most �(n − 1)/2� vertices.

2. There exists a unique edge e∗ such that each of the two subtrees obtained by
removing e∗ contains n/2 vertices.

Such a vertex v∗ or an edge e∗ are called the unicentroid or bicentroid of the tree,
respectively. We call the unicentroid or bicentroid the centroid of the tree. The root of
the tree is defined by the vertex/vertices in its centroid. For every vertex v ∈ V except
for the root, we define the parent of v as the vertex adjacent to v which is nearer to
the root than v. For every vertex v ∈ V , the rooted tree Tv is defined to be the tree
induced by v and all descendants of v.

The set of vertices and the set of edges of a graph G are also denoted by V (G)
and E(G), respectively. Two chemical graphs G1 and G2 are called isomorphic if
there is a bijection ψ : V (G1) → V (G2) such that (u, v) ∈ E(G1) if and only if
(ψ(u), ψ(v)) ∈ E(G2), where the types of atoms of u (resp., v) and ψ(u) (resp.,
ψ(v)) are identical, and the types of bonds of (u, v) and (ψ(u), ψ(v)) are identical.
Such a bijection is called an isomorphism of G1 and G2. For two rooted subtrees Tu

and Tv , we say that Tu and Tv are rooted-isomorphic if there is an isomorphism ψ

between Tu and Tv such that ψ(u) = v. If Tu and Tv are rooted-isomorphic, then we
write this as Tu ≈

r
Tv .

For each subtree Tv , we write σ(v, Tv) to refer to the signature of the subtree Tv ,
that is a non-negative integer satisfying a property that

σ(v, Tv) = σ(u, Tu)⇔ Tv ≈
r

Tu .

We show an example of signatures in Fig. 3. It is known that there is a choice of signa-
ture such that signatures of all rooted subtrees of a given non-colored rooted tree can
be computed in linear time, where these signatures are consecutive integers beginning
with 1 and ending at most |V | [17]. About such signatures, O(log |V |) bits suffice to
store each signature. In this paper, we consider a tree-like chemical graph composed
of only four types of atoms. Then, by converting a given rooted chemical tree G into
a non-colored rooted tree, we can compute signatures of all rooted subtrees of G in
linear time, where O(log |V |) bits suffice to store each signature. Note that signature
σ(v, Tv) is independent of the given numbering of vertices. In the rest of this paper,
we write σ(v, Tv) as σ(v) if Tv is clear from the context.
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Fig. 3 An example of rooted subgraphs. COOH and OH are regarded as single vertices for simplicity. Each
Arabic number is a signature of each rooted subtree

2.3 Sketch of our algorithm

Before giving the definition of stereoisomers, we show a sketch of our counting algo-
rithm. Here, we consider an example given in Fig. 3. Our counting algorithm computes
the number of stereoisomers from bottom to the root along tree G. At vertex v1, the
number of combinations of stereoisomers of children of v1 such that v1 is (resp., is not)
an asymmetric carbon atom is computed as h(v1) (resp., g(v1)), and the number of
stereoisomers of Tv1 is computed as f (v1). It is to be noted that the same carbon atom
can be both an asymmetric atom and a symmetric atom depending on configurations
of its descendants.

Obviously, we have g(v1) = 0, h(v1) = 1 and f (v1) = g(v1) + 2h(v1) = 2
because there exist two different configurations around v1 when v1 is an asymmetric
carbon atom. We represent these two configurations by two labels “+” and “−”.

Similarly, we have g(v2) = 0, h(v2) = 1 and f (v2) = g(v2) + 2h(v2) = 2.
After that, at vertex v3, we compute g(v3), h(v3) and f (v3). Let T+v1

and T−v1
(resp.,

T+v2
and T−v2

) be two possible configurations of Tv1 (resp., Tv2 ), where T+v1
and T+v2

(resp., T−v1
and T−v2

) are stereoisomorphic. Then, g(v3) corresponds to two combina-
tions (T+v1

, T+v2
) and (T−v1

, T−v2
), and h(v3) corresponds to one combination (T+v1

, T−v2
).

Since Tv1 and Tv2 are rooted-isomorphic, it is enough to consider one combination
(T+v1

, T−v2
) though we can consider two combinations (T+v1

, T−v2
) and (T−v1

, T+v2
). Then

we have g(v3) = f (v1) = 2, h(v3) =
( f (v1)

2

) = 1 and f (v3) = g(v3)+ 2h(v3) = 4.
Similarly, we have g(v4) = 2, h(v4) = 1 and f (v4) = g(v4)+ 2h(v4) = 4. After

that, at vertex v5, the number of combinations of stereoisomers of children of v5 such
that a cis-trans isomer arises (resp., does not arise) around the double bond between
v5 and its parent is computed as h(v5) (resp., g(v5)). A cis-trans isomer arises only
when three-dimensional structures of Tv3 and Tv4 are different. Since Tv3 and Tv4 are
rooted-isomorphic, we have h(v5) =

( f (v3)
2

) = 6 and g(v5) = f (v3) = 4. After that,
at vertex v6, we have f (v6) = g(v5) + 2h(v5) = 16, considering a cis-trans isomer
around the double bond between v6 and v5.
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In Sects. 2.4 and 2.5, we give a formal definition of labels (such as “+” and “−”),
isomorphism considering difference of configurations, functions g, h and f , and con-
figurations corresponding to labels.

2.4 Definition of stereoisomer

This subsection gives the formal definition of stereoisomers considered in this paper.

2.4.1 Definition of representations and stereoisomorphism

To define stereoisomers of G, we first introduce a label l(v) for each carbon atom
v ∈ VC, where l(v) takes one of+,−, cis, trans and nil (nil means that v has a unique
configuration around v). As will be shown, labels cis and trans do not always cor-
respond to chemical terms cis and trans. The rule of attaching each label is given in
Definition 4. We define the total order among these labels by

“+ ” > “− ” > “cis” > “trans” > “nil.”

For every vertex v ∈ VO ∪ VN ∪ VH, define l(v) = nil.
We next introduce a representation I of G as a set of pairs of vertex-number n(v)

and label l(v) over all vertices v ∈ V . That is,

I = {(n(v), l(v)) | v ∈ V }.

Let R(G) denote the set of all representations I of G, where |R(G)| = 5|VC| holds.
Similarly, for each vertex v ∈ V , we define a representation Iv of the rooted subtree
Tv as

Iv = {(n(u), l(u)) | u ∈ V (Tv)}.

Let R(Tv) denote the set of all representations Iv of Tv . As will be shown in
Definition 4, only representations which satisfy a certain condition, called “proper
representations,” define stereoisomers.

For each vertex v ∈ V , the signature σs(Iv) of a representation Iv ∈ R(Tv) is
defined recursively as a sequence of pairs of signature σ(v) and label l(v) over all
vertices v ∈ V (Tv) as follows.

(i) For a leaf (a vertex with no children) v ∈ V , we define

σs(Iv) = [(σ (v), l(v))].

(ii) For a representation Iv of the subtree Tv rooted at a non-leaf vertex v ∈ V ,
let x1, x2, . . . , xk be the children of v, ordered such that σs(Ix1), σs(Ix2), . . . ,

σs(Ixk ) are lexicographically non-decreasing. Then Iv is denoted by Iv =
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{(n(v), l(v))} ∪ Ix1 ∪ Ix2 ∪ · · · ∪ Ixk , Ixi ∈ R(Txi ) (i = 1, 2, . . . .k), and σs(Iv)
is defined as concatenation of sequences by

σs(Iv) = [(σ (v), l(v)), σs(Ix1), σs(Ix2), . . . , σs(Ixk )].

Note that the σs(Iv) is independent of the given numbering of vertices.

Definition 2 For two subtrees Tu and Tv , representations Iu ∈ R(Tu) and Iv ∈ R(Tv)
are rooted-stereoisomorphic if and only if σs(Iu) = σs(Iv) holds. If Iu and Iv are
rooted-stereoisomorphic, we write this as Iu ≈

I
Iv .

The signature σs(I ) of a representation I ∈ R(G) is defined as a sequence of pairs
of signature σ(v) and label l(v) over all vertices v ∈ V as follows.

(i) If G has the unicentroid v, then we define

σs(I ) = σs(Iv)

.
(ii) If G has the bicentroid {v1, v2}, where σs(Iv1) ≥ σs(Iv2), then σs(I ) is defined

as concatenation of sequences by

σs(I ) = [σs(Iv1), σs(Iv2)].

Definition 3 Two representations I, I ′ ∈ R(G) are stereoisomorphic if and only if
σs(I ) = σs(I ′) holds.

We remark that a representation I ∈ R(G) may not correspond to any possible set
of configurations around carbon atoms. Definition 4 defines “proper representations”
to denote those which give recursive structures of configurations around carbon atoms.
Also two distinct representations I and I ′may be stereoisomorphic. Definition 5 shows
how to uniquely choose one of them as the “canonical form.”

2.4.2 Definition of proper representations

This subsection defines “proper representations.” In the rest of Section 2, we regard
only the vertex v1 with n(v1) < n(v2) in the bicentroid {v1, v2} of G as the centroid of
G unless otherwise stated, and treat the edge corresponding to a double bond between
two adjacent carbon atoms as two distinct edges. We consider that these two edges
and two carbon atoms form a circuit, which we call a carbon circuit.

First we introduce an orientation of a carbon circuit. We define an orientation of
a carbon circuit between two adjacent carbon atoms u, v ∈ VC only if one of the
following cases holds. Otherwise, no orientation is defined for carbon circuits. We
suppose that v is closer to the root than u. Orientation of a carbon circuit is the new
key notion to lead us to a mathematically consistent representation for stereoisomers.

Case-1 u has two children x and y such that σs(Ix ) > σs(Iy) (see Fig. 4a): For the
four directions d0, d1, d2 and d3 of carbon atom u (see Fig. 1a), x and y are assumed
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Fig. 4 Graph structures around
a carbon circuit between u and v

(a) (b)

(a) (b)

Fig. 5 The orientation of a carbon circuit, where d0, d1, d2 and d3 are the directions from u

to be in directions d2 and d3, respectively. Then we define the orientation of the carbon
circuit between u and v as

d0 → u → d1

(see Fig. 5a).

Case-2 u and its child u′ ∈ VC are connected by a double bond and the orientation
of the carbon circuit between u and u′ is defined (see Fig. 4b): For the four directions
d0, d1, d2 and d3 of carbon atom u (see Fig. 1a), v is assumed to be in directions d0
and d1 and the orientation of the carbon circuit between u and u′ is already given as
d2 → u → d3. Then we define the orientation of the carbon circuit between u and v
is given as

d0 → u → d1

(see Fig. 5b).

Definition 4 A representation I ∈ R(G) (or I ∈ R(Tv), v ∈ V ) is called proper if
the label l(v) of each carbon atom v ∈ VC in I (or Iv) satisfies the following condition.

Case-1 v is connected with four atoms: l(v) ∈ {+,−} if σs(Iu) of every child u of
v is different from each other, and l(v) = nil otherwise.

Case-2 v and one of its children u ∈ VC are connected by a double bond:

(i) the carbon circuit between v and u has no orientation: l(v) = nil.
(ii) the carbon circuit between v and u has an orientation, and v is not the cen-

troid of G: l(v) ∈ {cis, trans} if v has other child x than u (see Fig. 6a), and
l(v) = nil otherwise (i.e., v is adjacent to its parent by a double bond).

(iii) the carbon circuit between v and u has an orientation, and v is the centroid of
G:
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(b)(a) (c)

Fig. 6 Graph structures considered in Definition 4

(iii-1) v and its child u′( = u) are connected by a double bond (see Fig. 6b): l(v) ∈
{cis, trans} if the carbon circuit between u and u′ has orientation, and l(v) =
nil otherwise.

(iii-2) v and its children x, y( = u) are connected by single bonds (see Fig. 6c):
l(v) ∈ {cis, trans} if σs(Ix ) = σs(Iy), and l(v) = nil otherwise.

Case-3 The other case: l(v) = nil.

The above definition of {+,−} is similar to the one in [11]. However, since we give
our own definition of stereoisomers for the purpose of efficient enumeration, it is not
exactly the same.

As will be discussed in Sect. 2.5, a proper representation Iv ∈ R(Tv) realizes
a set of configurations around carbon atoms in Tv , and is considered as a rooted-
stereoisomer of Tv . Similarly we consider a proper representation I ∈ R(G) as a
stereoisomer of G. However, two proper representations Iv ∈ R(Tv) and I ′v ∈ R(Tv)
may be rooted-stereoisomorphic. In the next section, we determine one of all rooted-
stereoisomorphic (resp., stereoisomorphic) proper representations as the “canonical
form” of the corresponding rooted-stereoisomer (resp., stereoisomer).

2.4.3 Canonical form of proper representations

Here we consider an example given in Fig. 7, where COOH and OH are regarded as
single vertices for simplicity and we write the vertex whose vertex-number is i as vi

(i.e., n(vi ) = i). For the graph G in Fig. 7, v1 and v2 are the bicentroid of G, and there
are representations Ia, Ib ∈ R(G) with

Ia = {(1,+), (2,−), (3, nil), (4, nil), (5, nil), (6, nil), (7, nil), (8, nil)},
Ib = {(1,−), (2,+), (3, nil), (4, nil), (5, nil), (6, nil), (7, nil), (8, nil)}

(see Fig. 7a, b, respectively). Figure 7 shows T (v1) ≈
r

T (v2), T (v3) ≈
r

T (v4), T (v5) ≈
r

T (v6), T (v7) ≈
r

T (v8) and no two of Tv1 , Tv3 , Tv5 and Tv7 are rooted-isomorphic. Then

we assume that we choose signatures with σ(v1) = σ(v2) = 1, σ (v3) = σ(v4) =
2, σ (v5) = σ(v6) = 3 and σ(v7) = σ(v8) = 4. Note that Ia and Ib are distinct as sets.
However, Ia and Ib are stereoisomorphic because they have the identical signature

σs(Ia) = σs(Ib) = [[(1,+), [(4, nil)], [(3, nil)], [(2, nil)]], [(1,−), [(4, nil)],
[(3, nil)], [(2, nil)]]].
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(a) (b)

Fig. 7 An example of the compounds that have distinct proper representations which are stereoisomorphic.
Each Arabic number is a signature of each rooted subtree

Then we define the canonical form of proper representations I ∈ R(G) as follows.

Definition 5 Let L(I ) be a non-decreasing sequence of the elements (n(v), l(v)) in
a set I according to the given numbering of the vertices in V .

(i) The proper representation I ∈ R(G) with the lexicographically maximum
L(I ) among all proper representations in R(G) which are stereoisomorphic is
defined as the canonical form of these representations.

(ii) For each vertex v ∈ V , the canonical form of representations in R(Tv) which
are rooted-stereoisomorphic is defined by the representation Iv ∈ R(Tv) with
the lexicographically maximum L(Iv) among them.

Note that L(I ) now reflects the given numbering on the vertex set V (recall that the
signature σs does not reflect the vertex numbering). For the example in Fig. 7, we have

L(Ia) = [(1,+), (2,−), (3, nil), (4, nil), (5, nil), (6, nil), (7, nil), (8, nil)].
L(Ib) = [(1,−), (2,+), (3, nil), (4, nil), (5, nil), (6, nil), (7, nil), (8, nil)].

and we define Ia to be the canonical form of these stereoisomorphic representations.

Definition 6 For a tree-like chemical graph G = (V, E), we define the number f ∗(G)
of stereoisomers of G by the number of all canonical forms of proper representations
in R(G). Similarly, for each vertex v ∈ V , we define the number f (G, v) of stereo-
isomers of G by the number of all canonical forms of proper representations in R(Tv).
Definition 7 For a tree-like chemical graph G = (V, E), let I(G) denote a set of
proper representations in R(G) such that |I(G)| = f ∗(G) and no two representa-
tions in I(G) are stereoisomorphic. Similarly, for each vertex v ∈ V , let I(v) denote
a set of proper representations in R(Tv) such that |I(v)| = f (G, v) and no two
representations in I(v) are stereoisomorphic.

In Sect. 3, we give an algorithm that outputs each element I of I(G)without dupli-
cation. The choice of I(G) and I(v), v ∈ V is determined by an order of choosing
backtracking processes in our algorithm (see Sect. 3.2.1). The algorithm is based on
the following relationship between canonical forms of subtrees Tv, v ∈ V .
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We call a vertex v ∈ VC with l(v) ∈ {+,−} an asymmetric carbon atom. If
l(v) ∈ {cis, trans} then we say that a cis-trans isomer arises around v. By definition,
a cis-trans isomer cannot arise around an asymmetric carbon atom v.

To compute f (G, v), we define the following.

g(G, v): the number of combinations of stereoisomers of Tx over all children x of v
such that

(i) v is not an asymmetric carbon atom; and
(ii) no cis-trans isomer arises around any vertex u with u = v or an

ancestor u connected to v by a chain of double bonds between car-
bon atoms,

h(G, v): the number of combinations of stereoisomers of Tx over all children x of v
such that

(i) v is an asymmetric carbon atom; or
(ii) a cis-trans isomer arises around any vertex u with u = v or an ances-

tor u connected to v by a chain of double bonds between carbon
atoms.

In the rest of this paper, we write f (G, v), g(G, v) and h(G, v) as f (v), g(v) and
h(v), respectively. We consider some lemmas for computing f (v), g(v) and h(v) in
Appendix A.

2.5 Configuration around each carbon atom corresponding to label

This subsection describes how the configuration around each carbon atom v is deter-
mined based on its label l(v). By the definition of labels, the configuration around v
is unique if a carbon atom v receives label l(v) = nil. In what follows, we consider a
carbon atom v with l(v) = nil. There are two such cases.

Case-1 v is adjacent to four atoms, and l(v) ∈ {+,−}: Such a case occurs only when
signature σs of every child of v is different from each other. If v is one of the bicentroid
of G, then we treat the other vertex in the bicentroid as the parent of v.

(i) v has the parent: For the four directions di , i = 0, 1, 2, 3 from v, as in Fig. 1a,
we assume without loss of generality that the parent of v appears in direction
d0 and the child u of v with the maximum σs appears in direction d1. Then each
of the two configurations around v is determined by placing the rest of adjacent
vertices x and y in directions d2 and d3 so that either

σs(Ix ) > σs(Iy)⇔ l(v) = +

or

σs(Ix ) < σs(Iy)⇔ l(v) = −

holds (see Fig. 8a).
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Fig. 8 Configurations around a
carbon atom v ∈ VC which is
adjacent to four atoms. a The
case where v has the parent. It
holds σs (Iu) > σs (Ix ) > σs (Iy)

if and only if l(v) = +. It holds
σs (Iu) > σs (Iy) > σs (Ix ) if
and only if l(v) = −. b The case
where v has no parent (i.e., v is
the unicentroid). It holds
σs (Iw) > σs (Iu) > σs (Ix ) >

σs (Iy) if and only if l(v) = +. It
holds σs (Iw) > σs (Iu) >

σs (Iy) > σs (Ix ) if and only if
l(v) = −

(a) (b)

(ii) v has no parent (i.e. v is the unicentroid of G): For the four directions di , i =
0, 1, 2, 3 from v, as in Fig. 1a, we assume without loss of generality that the
child w of v with the maximum σs appears in direction d0 and the child u of
v with the second maximum σs appears in direction d1. Then each of the two
configurations around v is determined by placing the rest of adjacent vertices
x and y in directions d2 and d3 so that either

σs(Ix ) > σs(Iy)⇔ l(v) = +

or

σs(Ix ) < σs(Iy)⇔ l(v) = −

holds (see Fig. 8b).

Case-2 v is adjacent to one of its children u ∈ VC by a double bond and l(v) ∈
{cis, trans}: Such a case occurs only when the carbon circuit between v and u has an
orientation. For the four directions di , i = 0, 1, 2, 3 from v, as in Fig. 1a, we assume
without loss of generality that the orientation of the carbon circuit between v and u is
given by d0 → v→ d1.

(i) v is not the centroid of G: Since l(v) ∈ {cis, trans}, v has exactly two children.
Let x be the other child than u. Then each of the two configurations around v
is determined by placing x so that either

xappears in direction d3 ⇔ l(v) = cis

or

xappears in direction d2 ⇔ l(v) = trans

holds (see Fig. 9).
(ii) v is the centroid of G:
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(a) (b)

Fig. 9 Configurations around a carbon circuit between v ∈ VC and a child u ∈ VC of v, where v is not the
centroid of G. a l(v) = cis, b l(v) = trans

(a) (b)

Fig. 10 Configurations around carbon circuits between v ∈ VC and children u, u′ ∈ VC of v, where v is
the centroid of G. a l(v) = cis, b l(v) = trans

(1) v is adjacent to a child u′( = u) by a double bond: The carbon circuit between
u and u′ has an orientation because l(v) ∈ {cis, trans}. Then each of the two
configurations around v is determined by placing u′ so that either

l(v) = cis ⇔ the orientation of the carbon circuit between uand u′is
d2 → v→ d3

or

l(v) = trans ⇔ the orientation of the carbon circuit between uand u′is
d2 ← v← d3

holds (see Fig. 10).
(2) v is adjacent to its children x, y ( = u) by single bonds: It holds σs(Ix ) = σs(Iy)

because I (v) ∈ {cis, trans}. Assume without loss of generality that x and y
appear in directions d2 and d3, respectively. Then each of the two configurations
around v is determined by placing x and y so that either

σs(Ix ) > σs(Iy)⇔ l(v) = cis

or

σs(Ix ) < σs(Iy)⇔ l(v) = trans

holds (see Fig. 11).
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Fig. 11 A Configuration around
a carbon circuit between v ∈ VC
and a child u ∈ VC of v, where v
is the centroid of G. l(v) = cis
if and only if σs (Ix ) > σs (Iy).
l(v) = trans if and only if
σs (Ix ) < σs (Iy)

Given a proper representation I ∈ I(G), we can determine the set of configura-
tions around all carbon atoms represented by I , which are determined from bottom
to the root along the rooted tree G. Conversely, given a set of configurations of all
carbon atoms of a stereoisomer of G, we can construct the proper representation I
corresponding to the structure from bottom to the root along the rooted tree G.

3 Algorithm

In this section we present an algorithm for enumerating all stereoisomers of a tree-
like chemical graph G. The first phase, called Counting phase, computes f ∗(G) by
dynamic programming. Using the information calculated by Counting phase, the sec-
ond phase, called Output phase, constructs each stereoisomer one by one. Section 3.1
and Sect. 3.2 explain Counting phase and Output phase respectively.

3.1 Counting phase

Counting phase computes f (v), g(v) and h(v) for every vertex v ∈ V from bottom to
the root along tree G. When we reach the centroid, we are ready to compute f ∗(G).
All the recursive formulas for f (v), g(v), h(v) and f ∗(G) are given in Appendix C.
An entire description of the algorithm is given as follows.

Algorithm Counting phase
Input: A tree-like chemical graph G = (V, E) whose vertex set consists of carbon,
hydrogen, oxygen and nitrogen atoms along with vertex-numbers.
Output: The number of stereoisomers f ∗(G) and f (v), g(v), h(v) for every vertex
v ∈ V which is not the unicentroid.

Find the centroid of G;
Let the centroid be the root of the tree;
Compute signatures of all rooted subtrees Tv, v ∈ V ;
Initialize the scanning queue Q ← φ;
for each leaf v ∈ V do

g(v) := 1; h(v) := 0; f (v) := 1;
Let v be “scanned”;
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/* Let u be the parent of v. */
if all the children of u are “scanned” and u is not the unicentroid then

ENQUE(Q, u)
end if

end for;
while Q = φ do
v = DEQUE(Q);
Compute f (v), g(v) and h(v) as described in Appendix C.1;
Let v be “scanned”;
/* Let u be the parent of v. */
if all the children of u are “scanned” and u is not the unicentroid then

ENQUE(Q, u)
end if

end while;
if G has the unicentroid then

Compute f ∗(G) as described in Appendix C.2 Case-1.
else /* G has the bicentroid. */

Compute f ∗(G) as described in Appendix C.2 Case-2.
end if.
In general, the number of stereoisomers increases exponentially as the number

of atoms increases. In the following, we assume that each of addition, subtraction,
multiplication, and division over integers can be executed in a unit time. We get the
following theorem.

Theorem 8 For a tree-like chemical graph G = (V, E) with |V | = n, Counting
phase computes the number of stereoisomers f ∗(G) in O(n) time and space.

Proof of Theorem 8 is given in Appendix B.1.

3.2 Output phase

Output phase constructs proper representations for stereoisomers by using f ∗(G),
f (v), g(v) and h(v) for all non-unicentroid vertices v. For i = 1, 2, . . . , f ∗(G),
we output the proper representation for the i-th stereoisomer of G by backtrack-
ing the computation process of Counting phase. When we compute the k-th rooted-
stereoisomer of Tv , we detect the corresponding label l(v) and calculate ku for every
child u of v, and we trace the computation process recursively to the leaves of G.
When this backtrack process completes, we get one proper representation generated
by the settled labels l(v) for all v ∈ V .

Here we consider an example given in Fig. 3. When Output phase processes v3,
we have received an instruction from the parent of v3 “we choose the kv3 -th rooted-
stereoisomer of Tv3 .” It holds 1 ≤ kv3 ≤ 4 because Counting phase computed f (v3) =
4. We order rooted-stereoisomers of Tv3 as follows.

• If kv3 = 1 holds, then we have l(v3) = nil, and the rooted-stereoisomers of Tv3

is composed of the first stereoisomer of Tv1 and the first stereoisomer of Tv2 (i.e.,
kv1 = kv2 = 1 holds).
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• If kv3 = 2 holds, then we have l(v3) = nil, and the rooted-stereoisomers of Tv3 is
composed of the second stereoisomer of Tv1 and the second stereoisomer of Tv2

(i.e., kv1 = kv2 = 2 holds).
• If kv3 = 3 holds, then we have l(v3) = +, and the rooted-stereoisomers of Tv3 is

composed of the first stereoisomer of Tv1 and the second stereoisomer of Tv2 (i.e.,
kv1 = 1 and kv2 = 2 hold).

• If kv3 = 4 holds, then we have l(v3) = −, and the rooted-stereoisomers of Tv3 is
composed of the first stereoisomer of Tv1 and the second stereoisomer of Tv2 (i.e.,
kv1 = 1 and kv2 = 2 hold).

We compute kv1, kv2 and l(v3) from given kv3 , using information of g(v3), h(v3) and
f (v3) computed in Counting phase.

The rest of this section is organized as follows. After Sect. 3.2.1 defines bijections
between a set of tuples and combinations of the elements in tuples, Sect. 3.2.2 gives an
entire description of the algorithm and analyzes the time complexity of Output phase.

3.2.1 Bijections for fast generation

Recall that we do not generate any table of (rooted) stereoisomers during Counting
phase. However, Output phase needs to find for a given k the k-th combination of num-
bers ku of all children of u. To design an O(1) time algorithm for finding a desired
combination of such numbers ku , this subsection defines bijections between a set of
tuples and combinations of the elements in tuples.

Definition 9 For positive integers M1,M2, . . . ,Mp, define the set D(M1,M2, . . . ,

Mp) of tuples by

D(M1,M2, . . . ,Mp) := {[k1, k2, . . . , kp] | ki ∈ {1, 2, . . . ,Mi }, i = 1, 2, . . . , p}.

Let D(;M1,M2, . . . ,Mp)denote a bijection between the set {1, 2, . . . ,M1 M2 · · ·Mp}
of integers and D(M1,M2, . . . ,Mp). Let D(k;M1,M2, . . . ,Mp) denote the tuple
[k1, k2, . . . , kp] ∈ D(M1,M2, . . . ,Mp) corresponding to k ∈ {1, 2, . . . ,M1 M2
· · ·Mp}.

Note that choice of such a bijection D(;M1,M2, . . . ,Mp) is not unique. It is
not difficult to see that there exists a bijection D(;M1,M2, . . . ,Mp) such that we
can compute D(k;M1,M2, . . . ,Mp) in O(p) time and space for any integer k ∈
{1, 2, . . . ,M1 M2 · · ·Mp} (see Appendix D for the detail).

Definition 10 For positive integers n and p, define the set Cn,p of tuples by

Cn,p := {[k1, k2, . . . , kp] | ki ∈ {1, 2, . . . , n}, i = 1, 2, . . . , p, k j = k j ′,

1 ≤ j < j ′ ≤ p}.

Let Cn,p() denote a bijection between the set {1, 2, . . . ,
(n

p

)} of integers and Cn,p. Let

Cn,p(k) denote the tuple [k1, k2, . . . , kp] ∈ Cn,p corresponding to k ∈ {1, 2, . . . ,
(n

p

)}.
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Again choice of such a bijection Cn,p() is not unique. For p ≤ 4, we have shown
that there exists a bijection Cn,p() such that we can compute Cn,p(k) in O(1) time
and space for any integer k ∈ {1, 2, . . . ,

(n
p

)} (see Appendix D for the detail).

3.2.2 Description of Output phase

This subsection gives an entire description of Output phase and analyzes its time com-
plexity. Computation precesses for all the cases are given in Appendix E.

Algorithm Output phase
Input: A tree-like chemical graph G = (V, E) whose vertex set consists of car-
bon, hydrogen, oxygen and nitrogen atoms along with vertex-numbers, the root of
G, f (v), g(v) and h(v) for all non-unicentroid vertices v, signatures of all rooted-
subtrees Tv, v ∈ V , and f ∗(G).
Output: All the elements of I ∈ I(G) without duplication.

for each k = 1, 2, . . . , f ∗(G) do
for each v ∈ V do

l(v) := nil
end for;
if G has the unicentroid v then

/* Let v1, . . . , vi be the children of v */
Compute l(v j ) and k j ( j = 1, . . . , i) as described in Appendix E.1;
for each v j ( j = 1, . . . , i) do

Reverse (v j , Tv j , k j )

end for
else

/* Let {v1, v2} be the bicentroid of G, where n(v1) < n(v2) holds */
Compute l(v1), l(v2), k1 and k2 as described in Appendix E.1;
for each v j ( j = 1, 2) do

Reverse (v j , Tv j , k j )

end for
end if ;
Output I = {(i, l(vi )) | i ∈ {1, 2, . . . , n}} as the k-th stereoisomer

end for.
Procedure Reverse (v, Tv, k)
Input: v ∈ V , a rooted-subtree Tv and positive integer k.
Output: l(u) for all the vertices u ∈ Tv .

if v is not a leaf then
/* Let v1, . . . , vi be children of v */
Compute l(v) and k j ( j = 1, . . . , i) as described in Appendix E.2;
for each v j ( j = 1, . . . , i) do

Reverse (v j , Tv j , k j )

end for
else

Return
end if.
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Similarly to the time complexity of Counting phase, in the following, we assume
that each of addition, subtraction, multiplication, and division over integers can be
executed in a unit time. We get the following theorem.

Theorem 11 For a tree-like chemical graph G = (V, E) with |V | = n, Output phase
enumerates all the stereoisomers I ∈ I(G) without duplication in O(n) space and in
O(n) time per stereoisomer.

Proof of Theorem 11 is given in Appendix B.2.

4 Experimental results

We implemented our algorithm and conducted computational experiments to evaluate
the practical performance. This section shows the experimental results.

We experimented in order to see that computation times of Counting phase increase
linearly to the number of atoms (Experiment 1) and that computation times of Output
phase increase linearly to the number of stereoisomers (Experiment 2). In addition to
that, we experimented in order to see that our algorithm runs correctly by comparing
with the results of Razinger et al. [18] (Experiment 3). They constructed the pro-
gram for exhaustive, nonredundant stereoisomers generation using the idea of Nourse
[11], and tested the program with various compounds. We report experimental results
performed on a PC with a Intel(R) Core(TM) i5 CPU 650 3.20 GHz CPU.

Experiment 1 We generate some huge alkanes (CmH2m+2,m = 30, 60, 90, . . . , 300)
at random, and compute the number of stereoisomers of the compounds. Table 1 and
Fig. 12 show the experimental results of our algorithm. Computation times of Count-
ing phase are given by mean values of computation times of 1,00,000 times Counting
phase. From the graph in Fig. 12, we see that the computation time of Counting phase
increases linearly to the number of atoms.

Table 1 Computation time for huge alkanes

Input: f ∗(G) tc(10−5 s) to (s)

C30H62 32 1.60 0.00

C60H122 32,768 3.25 0.12

C90H182 524,288 5.15 2.95

C120H242 16,777,216 7.17 128.83

C150H302 536,870,912 9.23 T.O.

C180H362 8,589,934,592 11.90 T.O.

C210H422 549,755,813,888 13.76 T.O.

C240H482 2,199,023,255,552 16.20 T.O.

C270H542 35,184,372,088,832 18.44 T.O.

C300H602 2,251,799,813,685,248 21.04 T.O.

tc and to are the computation times of Counting phase and Output phase, respectively. “T.O.” means “time
over” (the limit was set to be 1,800 s)
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Fig. 12 Experimental results on Counting phase for alkanes

Experiment 2 Using KegDraw obtained from KEGG website (http://www.genome.
jp/kegg/download/kegtools.html), we create structural isomers of C25O24H52 as
instances such that a number of stereoisomers are generated. Figure 13 shows graph
structures of instances. Table 2 and Fig. 14 show the experimental results of our algo-
rithm. Computation times of Counting phase are given by mean values of computation
times of 1,00,000 times Counting phase. From the graph in Fig. 14, we see that the
computation time of Output phase increases linearly to the number of stereoisomers.

Experiment 3 We chose some of instances used by Razinger et al. [18], which are
composed of carbon, hydrogen, oxygen, fluorine, chlorine, and bromine atoms. The
current versions of our algorithm can treat only the compounds which are composed
of carbon, hydrogen, oxygen, and nitrogen atoms. Then, using KegDraw, we created
instances by replacing fluorine, chlorine and bromine atoms in the instances used by
Razinger et al. [18] with substructures−NH2,−CH2−NH2 and−CH2−CH2−NH2,
respectively. Graph structures of these instances and the numbers of stereoisomers
f ∗(G) that our algorithm computed are shown in Fig. 15. For each compound, CPU
times for Counting phase and Output phase are less than 0.01, and the number of
stereoisomers f ∗(G) is the same as that of Razinger et al. [18].

5 Conclusion

In this paper, we designed an algorithm for generating stereoisomers of tree-like chem-
ical graphs based on dynamic programming. For this, we defined representations of
stereoisomers, by attaching a suitable label to each vertex. For a graph with n vertices,
our algorithm correctly counts the number of stereoisomers in O(n) time and space

123

http://www.genome.jp/kegg/download/kegtools. html
http://www.genome.jp/kegg/download/kegtools. html


930 J Math Chem (2011) 49:910–970

(a) (b)

(c) (d)

(e) (f)

(g) (h) (i)

Fig. 13 Graph structures of C25O24H52

and correctly outputs all possible stereoisomers in O(n) space and in O(n) time per
stereoisomer. To our knowledge, it is the first algorithm for counting and enumerat-
ing stereoisomers with guaranteed computational complexity though it is limited to
tree-like chemical graphs. Furthermore, the algorithm is optimal provided that each
stereoisomer needs to be output explicitly in O(n) time. We also conducted computa-
tional experiments to evaluate the practical performance of the algorithm. The results
showed that it is very fast also in practice.
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Table 2 Computation time for
the chemical graphs shown in
Fig. 13

tc and to are the computation
times of Counting phase and
Output phase, respectively

Input: f ∗(G) tc(10−5s) to (s)
C25O24H52

(a) 88,320 1.85 0.21

(b) 131,072 2.01 0.28

(c) 131,328 2.04 0.28

(d) 524,800 1.88 1.21

(e) 699,136 1.93 1.71

(f) 1,048,576 1.97 2.26

(g) 2,097,152 1.94 4.59

(h) 4,194,304 2.20 9.30

(i) 8,388,608 2.23 18.83
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Fig. 14 Experimental results on Output phase for C25O24H52

Our method is similar to that by Nourse [11] in a sense that we consider all pos-
sible configurations around asymmetry carbon atoms. However, different from his
approach, our method does not generate the same stereochemical structures multiple
times and thus need not check duplications. This is achieved by an elaborate use of
dynamic programming, which leaded to significant reduction of the time complexity.

We considered in this paper stereoisomers caused only by asymmetry around carbon
atoms. However, the proposed techniques might be extended for other types of stereo-
isomers for which stereochemical configurations depend only on local substructures.
Molecules considered in this paper were also limited to those with tree-like structures
though most of existing methods can be applied to much more general structures [5,8–
11,13]. Therefore, it is left as future work to extend our algorithms to a wider class of
graphs, such as outerplanar graphs, as well as to extend to other types of stereoisomers
since the dynamic programming-based approach proposed in this paper might work
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Fig. 15 Graph structures and the numbers of stereoisomers f ∗(G) of instances for Experiment 2

for some graph classes for which compact and unique hierarchical decomposition of
a graph can be obtained. Another future work includes visualization and classification
of output representations of stereoisomers.
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Appendix A Lemmas for computing f (v), g(v) and h(v)

First we consider the case when v becomes an asymmetric carbon.

Lemma 12 Let v ∈ VC be a carbon atom which is not the centroid.

(i) v is an asymmetric carbon atom for a combination of stereoisomers of its children
if and only if v has exactly three children x, y and w connected with v by single
bonds (see Fig. 16(a)) and Ix ≈

I
Iy ≈

I
Iw ≈

I
Ix holds for the rooted-stereoisomers

Ix ∈ I(x), Iy ∈ I(y) and Iw ∈ I(w).
(ii) If v has exactly three children x, y and w, then for two sets

Ih(v) = {Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix ≈
I

Iy ≈
I

Iw ≈
I

Ix }

and

Ig(v) = {Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w)} \ Ih(v),

I(v) is given by

I(v) = {I ∪ {(n(v), nil)} | I ∈ Ig(v)} ∪ {I ∪ {(n(v),+)},
I ∪ {(n(v),−)} | I ∈ Ih(v)},

and we have g(v) = |Ig(v)|, h(v) = |Ih(v)| and f (v) = |I(v)| = g(v)+2h(v).

Proof (i) From definition of proper representations, l(v) ∈ {+,−} if and only if
v is adjacent to four atoms and the signatures σs(Iu) of all children u of v are
different from each other. Since v is not the centroid, v has exactly three children
x, y and w adjacent to v by single bonds and Ix ≈

I
Iy ≈

I
Iw ≈

I
Ix holds for the

rooted-stereoisomers Ix ∈ I(x), Iy ∈ I(y) and Iw ∈ I(w).
(ii) If a non-root carbon atom v has exactly three children x, y and w, then v is
adjacent to x, y, w and its parent by single bonds. Then h(v) (resp., g(v)) is the
number of combinations of stereoisomers of Tx ′ over all children x ′ of v such
that v is (resp., is not) an asymmetric carbon atom. By (i), v is an asymmetric
carbon atom if and only if Ix ≈

I
Iy ≈

I
Iw ≈

I
Ix holds. Then Lemma 12 (ii) holds

obviously. ��
Next we consider the case when a cis-trans isomer arises.

Lemma 13 Let v ∈ VC be a carbon atom which is not the centroid, and let v′ ∈
VC − {v} be a descendent of v connected to v by a chain of double bonds between
carbon atoms.

(i) A cis-trans isomer arises around v for a combination of stereoisomers of children
of v′ if and only if v has a child adjacent to v by a single bond and v′ has exactly
two children x and y adjacent to v′ by single bonds (see Fig. 16(b)) and Ix ≈

I
Iy

holds for the rooted-stereoisomers Ix ∈ I(x) and Iy ∈ I(y).
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(ii) If v′ has exactly two children x and y, then for two sets

Ig(v
′) = {Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix ≈

I
Iy}

and

Ih(v
′) = {Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix ≈

I
Iy},

I(v′) is given by

I(v′) = {I ∪ {(n(v′), nil)} | I ∈ Ig(v
′) ∪ Ih(v

′)},

and we have g(v′) = |Ig(v
′)|, h(v′) = |Ih(v

′)| and f (v′) = |I(v′)| = g(v′) +
h(v′).

(iii) Let u be a carbon atom u ∈ VC−{v, v′} in the v-v′ chain of double bonds between
carbon atoms, and u′ be the child of u (see Fig. 16(b) and (c)). For two sets

Ig(u) = Ig(u
′)and Ih(u) = Ih(u

′),

I(u) is given

I(u) = {I ∪ {(n(u), nil)} | I ∈ Ig(u) ∪ Ih(u)},

and we have g(u) = |Ig(u)|, h(u) = |Ih(u)| and f (v) = |I(u)| = g(u)+ h(u).
(iv) If v has a child x adjacent to v by a double bond and a child y adjacent to v by

a single bond (see Fig. 16(d)), then for two sets

Ig(v) = {Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ I(y)}

and

Ih(v) = {Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ I(y)},

I(v) is given by

I(v) = {I ∪ {(n(v), nil)} | I ∈ Ig(v)} ∪ {I ∪ {(n(v), cis)}, I ∪ {(n(v), trans)} |
I ∈ Ih(v)},

and we have g(v) = |Ig(v)|, h(v) = |Ih(v)| and f (v) = |I(v)| = g(v)+2h(v).

Proof (i) From definition of proper representations, for v ∈ VC which is not the
centroid, l(v) ∈ {cis, trans} if and only if v and one of its children w is con-
nected by a double bond and the other by a single bond, and the carbon circuit
between v andw has an orientation. From definition of an orientation of a carbon
circuit, the carbon circuit between v andw has an orientation if and only if there
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(a) (b) (c) (d)

Fig. 16 Graph structures around a non-root vertex (in Lemmas 12 and 13)

exists a descendent v′ ∈ VC of v connected to v by a chain of double bonds
between carbon atoms, v′ has exactly two children x and y connected with v′
by single bonds, and Ix ≈

I
Iy holds for rooted-stereoisomers Ix ∈ I(x) and

Iy ∈ I(y).
(ii) From Lemmas 12(i) and 13(i), v′ is not an asymmetric carbon atom and a cis-

trans isomer does not arise around v′. Then h(v′) (resp., g(v′)) is the number
of combinations of stereoisomers of Tx ′ over all children x ′ of v′ such that a
cis-trans isomer arises around any ancestor connected to v′ by a chain of double
bonds between carbon atoms (resp., no cis-trans isomer arises around any ances-
tor connected to v′ by a chain of double bonds between carbon atoms). From
Lemma 13(i), a cis-trans isomer arises around any ancestor connected to v′ by a
chain of double bonds between carbon atoms if and only if Tx ≈

I
Ty holds. Then

Lemma 13(ii) holds obviously.
(iii) From Lemmas 12(i) and 13(i), u is not an asymmetric carbon atom and a cis-

trans isomer does not arise around u. Then h(u) (resp., g(u)) is the number of
combinations of stereoisomers of Tx ′ over all children x ′ of u such that a cis-
trans isomer arises around any ancestor connected to u by a chain of double
bonds between carbon atoms (resp., no cis-trans isomer arises around any ances-
tor connected to u by a chain of double bonds between carbon atoms). From
Lemma 13(i) and (ii), a cis-trans isomer arises around any ancestor connected to
u by a chain of double bonds between carbon atoms if and only if Iu′ ∈ Ih(u′)
holds. Then Lemma 13(iii) holds obviously.

(iv) v is adjacent to its parent by a single bond. From Lemma 12(i), v is not an asym-
metric carbon atom. Then h(v) (resp., g(v)) is the number of combinations of
stereoisomers of Tx ′ over all children x ′ of v such that a cis-trans isomer arises
around v (resp., a cis-trans isomer do not arise around v). From Lemma 13(i),
(ii) and (iii), a cis-trans isomer arises around v if and only if Ix ∈ Ih(x) holds.
Then Lemma 13(iv) holds obviously. ��

123



936 J Math Chem (2011) 49:910–970

Appendix B Proof of Theorems

Appendix B.1 Proof of Theorem 8

Proof We can find the centroid of G in O(n) time and space by Jordan’s Theorem [16],
and we can compute signatures of all rooted-subtrees Tv, v ∈ V in O(n) time and space
[17]. In Counting phase, every vertex v ∈ V is visited exactly once and f (v), g(v)
and h(v) can be calculated in O(1) time and space as described in Appendix C.1,
and at the root of G, f ∗(G) can be calculated in O(1) time and space as described in
Appendix C.2. Hence Counting phase runs in O(n) time and space.

Appendix C.1 and Appendix C.2 take all the cases into consideration, and hence
Counting phase computes the number of stereoisomers f ∗(G) correctly. ��

Appendix B.2 Proof of Theorem 11

Proof For outputting one stereoisomer, every vertex v ∈ V is visited exactly once
and l(v) and ku for every child u of v can be calculated in O(1) time and space as
described in Appendix E.1 and Appendix E.2. Hence Output phase takes O(n) space
and O(n) time per stereoisomer.

Appendix E.1 and Appendix E.2 take all the cases into consideration, and hence
Output phase outputs all the stereoisomers I ∈ I(G) without duplication. ��

Appendix C Recursive formulas for Counting phase

This section is organized as follows. Appendix C.1 shows how to compute f (v), g(v)
and h(v). Appendix C.2 shows how to compute f ∗(G).

Appendix C.1 How to compute f (v), g(v) and h(v)

We compute f (v), g(v) and h(v) using Lemmas 12 and 13. We consider the following
five cases.

Case-1 v ∈ V is a leaf: l(v) must be nil and we have

g(v) = 1, h(v) = 0, f (v) = 1.

Case-2 v ∈ VC and v has three children. Let x, y and w be three children of v (see
Fig. 17a): We consider the following three subcases.
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Fig. 17 Graph structures
around a non-root vertex v (a) (b)

(d)(c)

(i) No two of Tx , Ty and Tw are rooted-isomorphic each other: Hence Ix ≈
I

Iy ≈
I

Iw ≈
I

Ix holds. Then

Ig(v) = φ,
Ih(v) = {Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w)},
I(v) = {I ∪ {(n(v), nil)} | I ∈ Ig(v)} ∪ {I ∪ {(n(v),+)}, I ∪ {(n(v),−)} |

I ∈ Ih(v)},

and we have

g(v) = 0, h(v) = f (x) f (y) f (w), f (v) = g(v)+ 2h(v).

(ii) Tx ≈
r

Ty and Tx ≈
r

Tw hold: Hence Ix ≈
I

Iw and Iy ≈
I

Iw hold. Then

Ig(v) = {Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix ≈
I

Iy},
Ih(v) = {Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix ≈

I
Iy},

I(v) = {I ∪ {(n(v), nil)} | I ∈ Ig(v)} ∪ {I ∪ {(n(v),+)}, I ∪ {(n(v),−)} |
I ∈ Ih(v)},
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and we have

g(v) = f (x) f (w), h(v) =
(

f (x)

2

)
f (w), f (v) = g(v)+ 2h(v).

(iii) Tx ≈
r

Ty ≈
r

Tw holds: Then

Ig(v) = {Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix ≈
I

Iy},
Ih(v) = {Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w),

Ix ≈
I

Iy ≈
I

Iw ≈
I

Ix },
I(v) = {I ∪ {(n(v), nil)} | I ∈ Ig(v)} ∪ {I ∪ {(n(v),+)},

I ∪ {(n(v),−)} | I ∈ Ih(v)},

and we have

g(v) = f (x)2, h(v) =
(

f (x)

3

)
, f (v) = g(v)+ 2h(v).

Case-3 v ∈ VC, and v is joined to two subtrees by single bonds and is joined to one
subtree by a double bond: We consider the following two subcases.

(i) v is joined to its parent by a double bond (see Fig. 17b): Then

Ig(v) = {Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix ≈
I

Iy},
Ih(v) = {Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix ≈

I
Iy},

I(v) = {I ∪ {(n(v), nil)} | I ∈ Ig(v) ∪ Ih(v)},

and we consider the following two subcases.

(1) If Tx ≈
r

Ty holds, then

g(v) = 0, h(v) = f (x) f (y), f (v) = g(v)+ h(v).

(2) If Tx ≈
r

Ty holds, then

g(v) = f (x), h(v) =
(

f (x)

2

)
, f (v) = g(v)+ h(v).
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(ii) v is joined to a child x of v by a double bond (see Fig. 17 (c)): Then

Ig(v) = {Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ I(y)},
Ih(v) = {Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ I(y)},
I(v) = {I ∪ {(n(v), nil)} | I ∈ Ig(v)} ∪ {I ∪ {(n(v), cis)},

I ∪ {(n(v), trans)} | I ∈ Ih(v)},

and we have

g(v) = g(x) f (y), h(v) = h(x) f (y), f (v) = g(v)+ 2h(v).

Case-4 v ∈ VC and v is joined to its parent by a double bond and its child y by a
double bond (see Fig. 17 (d)): Then

Ig(v) = Ig(y), Ih(v) = Ih(y), I(v) = {I ∪ {(n(v), nil)}
| I ∈ Ig(v) ∪ Ih(v)},

and we have

g(v) = g(y), h(v) = h(y), f (v) = f (y).

Case-5 The case other than Cases-1,2,3 and 4: In this case h(v) = 0 holds. Then
f (v) = g(v), and we consider the following two subcases.

(i) v ∈ V has exactly one child x : It holds

I(v) = {I ∪ {(n(v), nil)} | I ∈ I(x)}

and we have

f (v) = g(v) = f (x).

(ii) v ∈ V − VC has exactly two children x and y: Then

I(v) = {Ix ∪ Iy ∪ {(n(v), nil)} | Ix ∈ I(x), Iy ∈ I(y), Ix ≈
I

Iy}
∪{Ix ∪ Iy ∪ {(n(v), nil)} | Ix ∈ I(x), Iy ∈ I(y), Ix ≈

I
Iy}

and we consider the following two subcases.

(1) If Tx ≈
r

Ty holds, then

g(v) = f (x) f (y).
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(2) If Tx ≈
r

Ty holds, then

g(v) = f (x)+
(

f (x)

2

)
.

Appendix C.2 How to compute f ∗(G)

We consider the following two subcases.

Case-1 The root of G is the unicentroid v ∈ V : We consider the following three
subcases.

(i) v ∈ VC holds: We consider the following four subcases.

(1) v has exactly four children x, y, w and z (see Fig. 18a): In this case v can be
an asymmetric carbon atom. We consider the following five subcases.

i. If no two of Tx , Ty, Tw and Tz are rooted-isomorphic each other, then

I(G) = {{(n(v),+)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz, {(n(v),−)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz |
Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z)}

and we have

f ∗(G) = 2 f (x) f (y) f (w) f (z).

ii. If Tx ≈
r

Ty holds and no two of Tx , Ty and Tw are rooted-isomorphic each other,

then

I(G) = {{(n(v), nil} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w),
Iz ∈ I(z), Ix ≈

I
Iy}

∪{{(n(v),+)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz, {(n(v),−)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz |
Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈

I
Iy}

and we have

f ∗(G) = f (x) f (w) f (z)+ 2

(
f (x)

2

)
f (w) f (z).

iii. If Tx ≈
r

Ty, Tw ≈
r

Tz and Tx ≈
r

Tw hold, then

I(G) = {{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz |
Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈

I
Iy, Iw ≈

I
Iz}
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(a) (b)

(d)(c)

Fig. 18 Graph structures around the unicentroid v ∈ VC

∪{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz |
Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈

I
Iy, Iw ≈

I
Iz}

∪{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz |
Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈

I
Iy, Iw ≈

I
Iz}

∪{{(n(v),+)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz, {(n(v),−)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz |
Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈

I
Iy, Iw ≈

I
Iz}

and we have

f ∗(G)=
{

f (x) f (w)+ f (x)

(
f (w)

2

)
+

(
f (x)

2

)
f (w)

}
+ 2

(
f (x)

2

)(
f (w)

2

)
.

iv. If Tx ≈
r

Ty ≈
r

Tw and Tx ≈
r

Tz hold, then

I(G) = {{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w),
Iz ∈ I(z), Ix ≈

I
Iy}

∪{{(n(v),+)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz, {(n(v),−)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz |
Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈

I
Iy ≈

I
Iw ≈

I
Ix }

and we have

f ∗(G) = f (x)2 f (z)+ 2

(
f (x)

3

)
f (z).

v. If Tx ≈
r

Ty ≈
r

Tw ≈
r

Tz holds, then

I(G) = {{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz |
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Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈
I

Iy ≈
I

Iw}
∪{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz |
Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈

I
Iy ≈

I
Iw ≈

I
Iz}

∪{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz |
Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈

I
Iy ≈

I
Iw ≈

I
Iz ≈

I
Ix }

∪{{(n(v),+)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz, {(n(v),−)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz |
Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z),
No two of Ix , Iy, Iwand Izrepresent the same stereoisomer}

and we have

f ∗(G) =
{

f (x)2 +
(

f (x)

2

)
+ f (x)

(
f (x)− 1

2

)}
+ 2

(
f (x)

4

)
.

(2) v is joined to a child u by a double bond and children x and y by single bonds
(see Fig. 18b): In this case a cis-trans isomer can arise around v.

I(G) = {{(n(v), nil)} ∪ Iu ∪ Ix ∪ Iy | Iu ∈ I(u), Ix ∈ I(x),
Iy ∈ I(y), Ix ≈

I
Iy}

∪{{(n(v), nil)} ∪ Iu ∪ Ix ∪ Iy | Iu ∈ Ig(u), Ix ∈ I(x),
Iy ∈ I(y), Ix ≈

I
Iy}

∪{{(n(v), cis)} ∪ Iu ∪ Ix ∪ Iy, {(n(v), trans)} ∪ Iu ∪ Ix ∪ Iy |
Iu ∈ Ih(u), Ix ∈ I(x), Iy ∈ I(y), Ix ≈

I
Iy}

and we consider the following two subcases.
i. If Tx ≈

r
Ty holds, then we have

f ∗(G) = g(u) f (x) f (y)+ 2h(u) f (x) f (y).

ii. If Tx ≈
r

Ty holds, then we have

f ∗(G) =
{

g(u) f (x)+ h(u) f (x)+ g(u)

(
f (x)

2

)}
+ 2h(u)

(
f (x)

2

)
.

(3) v is joined to a child x by a triple bond and children y by a single bond (see
Fig. 18c): In this case Ix ≈

I
Iy holds. Then

I(G) = {{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y)}
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and we have

f ∗(G) = f (x) f (y).

(4) v is joined to children x and y by double bonds (see Fig. 18d): In this case a
cis-trans isomer can arise around v. We consider the following two subcases.

i. If Tx ≈
r

Ty holds, then

I(G) = {{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ Ig(y)}
∪{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ Ih(y)}
∪{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ Ig(y)}
∪{{(n(v), cis)} ∪ Ix ∪ Iy, {(n(v), trans)}
∪Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ Ih(y)}

and we have

f ∗(G) = g(x)g(y)+ g(x)h(y)+ h(x)g(y)+ 2h(x)h(y).

ii. If Tx ≈
r

Ty holds, then

I(G) = {{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ Ig(y), Ix ≈
I

Iy}
∪{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ Ig(y), Ix ≈

I
Iy}

∪{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ Ih(y)}
∪{{(n(v), cis)} ∪ Ix ∪ Iy, {(n(v), trans)} ∪ Ix ∪ Iy | Ix ∈ Ih(x),

Iy ∈ Ih(y), Ix ≈
I

Iy}
∪{{(n(v), cis)} ∪ Ix ∪ Iy, {(n(v), trans)} ∪ Ix ∪ Iy | Ix ∈ Ih(x),

Iy ∈ Ih(y), Ix ≈
I

Iy}

and we have

f ∗(G) = g(x)+
(

g(x)

2

)
+ g(x)h(x)+ 2

{
h(x)+

(
h(x)

2

)}
.

(ii) v ∈ VN holds: We consider the following two subcases.

(1) v has exactly three children x, y and w: We consider the following three sub-
cases.

i. If no two of Tx , Ty and Tw are rooted-isomorphic each other, then

I(G) = {{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w)}
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and we have

f ∗(G) = f (x) f (y) f (w).

ii. If Tx ≈
r

Ty and Tx ≈
r

Tw hold, then

I(G) = {{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y),
Iw ∈ I(w), Ix ≈

I
Iy}

∪{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y),
Iw ∈ I(w), Ix ≈

I
Iy}

and we have

f ∗(G) = f (x) f (w)+
(

f (x)

2

)
f (w).

iii. If Tx ≈
r

Ty ≈
r

Tw holds, then

I(G) = {{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y),
Iw ∈ I(w), Ix ≈

I
Iy}

∪{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w),
Ix ≈

I
Iy ≈

I
Iw ≈

I
Ix }

and we have

f ∗(G) = f (x)2 +
(

f (x)

3

)
.

(2) v is joined to a child x by a double bond and a child y by a single bond: In this
case Ix ≈

I
Iy holds. Then

I(G) = {{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y)}

and we have

f ∗(G) = f (x) f (y).

(iii) v ∈ VO holds: Then

I(G) = {{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix ≈
I

Iy}
∪ {{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix ≈

I
Iy}
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and we consider the following two subcases.

(1) If Tx ≈
r

Ty holds, then we have

f ∗(G) = f (x) f (y).

(2) If Tx ≈
r

Ty holds, then we have

f ∗(G) = f (x)+
(

f (x)

2

)
.

Case-2 The root of G is the bicentroid v1, v2 ∈ V : We suppose that n(v1) < n(v2)

holds. In this case, we first compute f (v1), g(v1) and h(v1) regarding v2 as the single
root and f (v2), g(v2) and h(v2) regarding v1 as the single root. Then we consider the
following two subcases.

(i) v1, v2 ∈ VC holds, and v1 and v2 are joined by a double bond (see Fig. 19): A
cis-trans isomer occurs around v1 if and only if Iv1 ∈ Ih(v1) and Iv2 ∈ Ih(v2).
We consider the following two subcases.

(1) If Tv1 ≈r Tv2 holds, then

I(G) = {{(n(v1), nil)} ∪ {(n(v2), nil)} ∪ Iv1 ∪ Iv2 | Iv1 ∈ Ig(v1), Iv2 ∈ Ig(v2)}
∪ {{(n(v1), nil)} ∪ {(n(v2), nil)} ∪ Iv1 ∪ Iv2 | Iv1 ∈ Ig(v1), Iv2 ∈ Ih(v2)}
∪ {{(n(v1), nil)} ∪ {(n(v2), nil)} ∪ Iv1 ∪ Iv2 | Iv1 ∈ Ih(v1), Iv2 ∈ Ig(v2)}
∪ {{(n(v1), cis)} ∪ {(n(v2), nil)} ∪ Iv1 ∪ Iv2 , {(n(v1), trans)}
∪ {(n(v2), nil)} ∪ Iv1 ∪ Iv2 | Iv1 ∈ Ih(v1), Iv2 ∈ Ih(v2)}

and we have

f ∗(G) = g(v1)g(v2)+ g(v1)h(v2)+ h(v1)g(v2)+ 2h(v1)h(v2).

(2) If Tv1 ≈r Tv2 holds, then

I(G) = {{(n(v1), nil)} ∪ {(n(v2), nil)} ∪ Iv1 ∪ Iv2 | Iv1 ∈ Ig(v1),

Iv2 ∈ Ig(v2), Iv1 ≈
I

Iv2}
∪{{(n(v1), nil)} ∪ {(n(v2), nil)} ∪ Iv1 ∪ Iv2 | Iv1 ∈ Ig(v1),

Iv2 ∈ Ig(v2), Iv1 ≈
I

Iv2}
∪{{(n(v1), nil)} ∪ {(n(v2), nil)} ∪ Iv1 ∪ Iv2 | Iv1 ∈ Ig(v1),

Iv2 ∈ Ih(v2)} ∪ {{(n(v1), cis)} ∪ {(n(v2), nil)} ∪ Iv1 ∪ Iv2 ,

{(n(v1), trans)} ∪ {(n(v2), nil)} ∪ Iv1 ∪ Iv2 |
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Fig. 19 Graph structures around
the bicentroid v1, v2 ∈ VC

Iv1 ∈ Ih(v1), Iv2 ∈ Ih(v2), Iv1 ≈
I

Iv2}
∪{{(n(v1), cis)} ∪ {(n(v2), nil)} ∪ Iv1 ∪ Iv2 , {(n(v1), trans)}
∪{(n(v2), nil)} ∪ Iv1 ∪ Iv2 |
Iv1 ∈ Ih(v1), Iv2 ∈ Ih(v2), Iv1 ≈

I
Iv2}

and we have

f ∗(G) = g(v1)+
(

g(v1)

2

)
+ g(v1)h(v1)+ 2

{
h(v1)+

(
h(v1)

2

)}
.

(ii) The case other than case (i): Then

I(G) = {{(n(v1), nil)} ∪ {(n(v2), nil)} ∪ Iv1 ∪ Iv2 | Iv1 ∈ I(v1), Iv2 ∈ I(v2),

Iv1 ≈
I

Iv2}
∪{{(n(v1), nil)} ∪ {(n(v2), nil)} ∪ Iv1 ∪ Iv2 | Iv1 ∈ I(v1),

Iv2 ∈ I(v2), Iv1 ≈
I

Iv2}

and we consider the following two subcases.

(1) If Tv1 ≈r Tv2 holds, then we have

f ∗(G) = f (v1) f (v2).

(2) If Tv1 ≈r Tv2 holds, then we have

f ∗(G) = f (v1)+
(

f (v1)

2

)
.

Appendix D Design of bijections

First, we consider how to design bijections in Definition 9.
The case of p = 1 is trivial. We set D(k;M1) := k.
When p = 2, we number all pairs of two integers as in Table 3. Using the

table, we compute a ≥ 0 and b ∈ {1, 2, . . . ,M2} such that k = aM2 + b, and
set D(k;M1,M2) := [a + 1, b].

By extending the case of p = 2, we get the following theorem.
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Theorem 14 For any positive integers p ≥ 1 and Mi (i = 1, 2, . . . , p), there exists
a bijection D(;M1,M2, . . . ,Mp) such that we can compute D(k;M1,M2, . . . ,Mp)

in O(p) time and space for any integer k ∈ {1, 2, . . . ,M1 M2 · · ·Mp}.

Proof We design an algorithm to compute D(k;M1,M2, . . . ,Mp) as follows. Clearly,
it works in O(p) time and space.

k′ := k;
for i = p to 1 do

Compute a ≥ 0 and b ∈ {1, 2, . . . ,Mi } such that k = aMi + b;
ki := b; k′ := a + 1

end for;
Set Dp(k) := [k1, k2, . . . , kp];

��

Next, we consider how to design bijections in Definition 10.
The case of p = 1 is trivial. We set Cn,1(k) := k.
When p = 2, we get the following theorem.

Theorem 15 For any positive integer n ≥ 2, there exists a bijection Cn,2() such that
we can compute Cn,2(k) in O(1) time and space for any integer k ∈ {1, 2, . . . ,

(n
2

)}.

Proof We design an algorithm to compute Cn,2(k) in O(1) time and space.

Case-1 n is odd: Assume that n integers are on a circle ordered clockwise. Let each
pair of distinct integers {m1,m2} with m1,m2 ∈ {1, 2, . . . , n} specify an edge of Kn .
By rotating an edge {1, i + 1}, we can get n pairs of integers whose differences are
equal to i .

Let E(i) denote the set of pairs of two integers, where the difference between
elements of e ∈ E(i) equals to i , as follows.

E(i) =
{
{m1,m2} | m1 ∈ {1, 2, . . . , n},m2 =

{
m1 + i if m1 + i ≤ n,
m1 + i − n if m1 + i > n,

}

i = 1, 2, . . . , (n − 1)/2.

Then

|E(i)| = n, i = 1, 2, . . . , (n − 1)/2.

Table 3 Lexicographical numbering

k 1 2 · · · M2 M1 M2

k1 1 1 · · · 1 2 2 · · · 2 · · · M1

k2 1 2 · · · M2 1 2 · · · M2 · · · M2
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We compute a ≥ 0 and b ∈ {1, 2, . . . , n} such that k = an + b, and set Cn,2(k) to be
the b-th element of E(a + 1). Thus we set

Cn,2(k) :=
{

[b, b + a + 1] if b + a + 1 ≤ n,
[b, b + a + 1− n] if b + a + 1 > n.

Case-2 n is even: We treat the pairs [i, n] (i ∈ {1, 2, . . . , n− 1}) separately from the
other pairs [i, j] (i, j ∈ {1, 2, . . . , n − 1}). Then we set

Cn,2(k) :=
{ [k, n] if 1 ≤ k < n,

Cn−1,2(k − (n − 1)) if k ≥ n.
��

For the case of p = 3 and 4, we define the following bijection.

Definition 16 For positive integers α,m and an integer β such that αi + β ≥ 1 (1 ≤
i ≤ m), define the set C ′α,β,m of tuples by

C ′α,β,m := {[i, j] | i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , αi + β}}.

Let C ′α,β,m() denote a bijection between the set {1, 2, . . . ,
∑m

i=1 αi + β} of inte-
gers and C ′α,β,m . Let C ′α,β,m(k) denote the tuple [i, j] ∈ C ′α,β,m corresponding to
k ∈ {1, 2, . . . ,

∑m
i=1 αi + β}.

Lemma 17 For any positive integers α,m and any integer β such that αi + β ≥
1 (1 ≤ i ≤ m), there exists a bijection C ′α,β,m() such that we can compute C ′α,β,m(k)
in O(1) time and space for any integer k ∈ {1, 2, . . . ,

∑m
i=1 αi + β}.

Proof We design an algorithm to compute C ′α,β,m(k) in O(1) time and space.
We define the following two sets.

S : = {[i, j] | 1 ≤ i ≤ m, 1 ≤ j ≤ αi + β},
T (i) : = {[i, j] | 1 ≤ j ≤ αi + β} (1 ≤ i ≤ m).

Then S is partitioned into T (i), 1 ≤ i ≤ m. The size of the set T (i)∪T (m−i+1), 1 ≤
i ≤ �m/2� is

|T (i) ∪ T (m − i + 1)| = αi + β + α(m − i + 1)+ β
= (m + 1)α + 2β.

We define γ := (m + 1)α + 2β and compute a ≥ 1 and b ∈ {1, 2, . . . , γ } such that
k = (a − 1)γ + b, Let C ′α,β,m(k) be the b-th element of T (a) ∪ T (m − a + 1). Then
we set

C ′α,β,m(k) :=
{ [a, b] if b ≤ αa + β,
[m − a + 1, b − (αa + β)] if b > αa + β. ��

When p = 3, we get the following theorem.

123



J Math Chem (2011) 49:910–970 949

Theorem 18 For any positive integer n ≥ 3, there exists a bijection Cn,3() such that
we can compute Cn,3(k) in O(1) time and space for any integer k ∈ {1, 2, . . . ,

(n
3

)}.
Proof Let m = �n/3� and r = n − 3m ∈ {0, 1, 2}.

Case-1 r ∈ {1, 2}: Assume that n integers are on a circle of length n, ordered clock-
wise. Then each triplet of three integers specifies a set of triangles [a, b, c], where
[a, b, c] is a triplet of the lengths of clockwise ordered edges of triangles in the set. If
we choose a and b, then c is specified as c = n−a−b. By rotating one triangle whose
vertices are {1, a + 1, a + b + 1}, we can get n triplets of three integers, and each
triplet corresponds to one triangle in the set of triangles [a, b, c]. From assumption we
consider the following two patterns.

(i) a < b < c or a < c < b,
(ii) a < b = c or a = c < b.

To generate the patterns above, we generate pairs [a, b] such that a < b and c =
n − a − b ≥ a. For each a = 1, 2, . . . , �n/3�, we set

b = a + j for j = 1, 2, . . . , n − 3a.

Now we take all the patterns into consideration. Clearly, we have �n/3� = m =
(n − r)/3 and

∑

1≤a≤�n/3�
(n − 3a) = (n − r)(n + r − 3)/6.

Then we have

n
∑

1≤a≤�n/3�
(n − 3a) = n(n − 1)(n − 2)/6 =

(
n

3

)

because r ∈ {1, 2}.
Let E(a, b) be the set of triplets of three integers generated by rotating a triangle

in the set of triangles [a, b, c = n − a − b]. Thus

E(a, b) = {[m1,m2,m3] |
m1 ∈ {1, 2, . . . , n},m2 = max{m1 + a,m1 + a − n},
m3 = max{m2 + b,m2 + b − n}}

and |E(a, b)| = n hold. We compute k′ ≥ 1 and k′′ ∈ {1, 2, . . . , n} such that k =
(k′ − 1)n + k′′, and let Cn,3(k) be the k′′-th element of the k′-th set E(a, b).

To decide k′-th set E(a, b), we compute one element of the set of triplets of three
integers

{[a, b = a + j, c = n − a − b] | j = 1, 2, . . . , n − 3a}, a = 1, 2, . . . ,m

from given k′.
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In order to convert a triplet [a, b, c] into a pair of two integers [i, j], we set a :=
m − i + 1. Then the k′-th triplets of three integers [a, b = a + j, c = n − a − b] is
decided by the k′-th pair [i, j] (i = 1, 2, . . . ,m, j = 1, 2, . . . , 3i + r − 3). From
Lemma 17, there exists an O(1) time and space algorithm that computes the k′-th pair
[i, j]. Then we can decide the k′-th E(a, b) in O(1) time and space.

Case-2 r = 0: We treat the triplets [i, j, n] (i, j ∈ {1, 2, . . . , n−1}) separately from
the other triplets [i, j, k] (i, j, k ∈ {1, 2, . . . , n − 1}). Then we set

Cn,3(k) :=
{

Cn−1,2(k) ∪ {n} if 1 ≤ k ≤ (n−1
2

)
,

Cn−1,3(k −
(n−1

2

)
) if k > n.

��

When p = 4, we get the following theorem.

Theorem 19 For any positive integer n ≥ 4, there exists a bijection Cn,4() such that
we can compute Cn,4(k) in O(1) time and space for any integer k ∈ {1, 2, . . . ,

(n
4

)}.

Proof Let m = �n/4� and r = n − 4m ∈ {0, 1, 2, 3}.

Case-1 r = 1: Assume that n integers are on a circle of length n, ordered clockwise.
Then each set of four integers specifies a set of tetragons [a, b, c, d], where [a, b, c, d]
is a series of the lengths of clockwise ordered edges of tetragons in the set. By rotating
one tetragon whose vertices are {1, a+1, a+b+1, a+b+c+1}, we can get n series
of four integers, and each set of four integers corresponds to one tetragon in the set of
tetragons [a, b, c, d]. We suppose that a is the shortest edge length among a, b, c and
d. If there are two or three shortest edges, then we choose the one whose next edge is
not the shortest as a. Then we have a = 1, 2, . . . , (n− 1)/4, b > a, c ≥ a and d ≥ a.
We consider patterns of tetragons according to the following two cases.

(i) c = a holds: We define the set A(a) of series of four integers for each a =
1, 2, . . . ,m as follows.

A(a) := {[a, b, c, d] | b = n − a − c − d, c = a, d

∈ {a, a + 1, . . . , �(n − 2a)/2�}}.

Then we have

|A(a)| = �(n − 2a)/2� − a + 1 = (n − 4a + 1)/2 = 2m + 1− 2a, for

a = 1, 2, . . . ,m,

and

∑

1≤a≤m

|A(a)| =
∑

1≤a≤m

(2m + 1− 2a) = m2.
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Fig. 20 Size of B(a). Each pair in each block denotes (b, c). For c = a + 1, b ∈ {a + 1, a + 2, . . . , a +
(n − 3a − c)(= n − 3a − 1)}, and for c = a + 2, b ∈ {a + 1, a + 2, . . . , n − 3a − 2}, and …, and for
c = a + (n − 4a − 1)(= n − 3a − 1), b ∈ {a + 1}

(ii) c > a holds: We define the set B(a, c) of series of four integers for each
a = 1, 2, . . . ,m − 1 and c = a + 1, a + 2, . . . , a + (n − 4a − 1) as follows.

B(a, c) := {[a, b, c, d] | b ∈ {a + 1, a + 2, . . . , a + (n − 3a − c)},
d = n − a − b − c}.

Then |B(a, c)| = n−3a−c holds. We define the set B(a) =⋃
a+1≤c≤n−3a−1 B(a, c)

for each a = 1, 2, . . . ,m − 1. Then all the elements of B(a) can be arranged in the
upper half of a (n − 4a − 1)× (n − 4a − 1) square, including the diagonal elements
(see Fig. 20). Then we have

|B(a)| = (n − 4a − 1)(n − 4a)/2

= 2(m − a)(4m + 1− 4a), for a = 1, 2, . . .m − 1.

and

∑

1≤a≤m−1

|B(a)| =
∑

1≤a≤m−1

2(m − a)(4m + 1− 4a) = m(m − 1)(8m − 1)/3.

Now we take all the patterns into consideration. Clearly, m = (n − 1)/4 holds and
we have
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n

⎛

⎝
∑

1≤a≤m

|A(a)| +
∑

1≤a≤m−1

|B(a)|
⎞

⎠ = n
{

m2 + m(m − 1)(8m − 1)/3
}

= nm(8m2 − 6m + 1)/3

= n(n − 1)(n − 2)(n − 3)/24 =
(

n

4

)
.

First we compute k′ ≥ 1 and k′′ ∈ {1, 2, . . . , n} such that k = (k′ − 1)n + k′′, and
let Cn,4(k) be the k′′-th element generated by rotation of the k′-th tetragon [a, b, c, d].
To compute [a, b, c, d] from k′, we consider the following two cases.

(i) k′ ≤ m2 =∑
1≤a≤m |A(a)| holds: From definition, we have A(a) = {[a, b =

n − a − c − d, c = a, d = a − 1+ j] | 1 ≤ j ≤ 2m + 1− 2a}, 1 ≤ a ≤ m.
In order to convert a series [a, b, c, d] into a pair of two integers [i, j], we set
a := m − i + 1. Then A(a) is rewritten as

A(a) = {[a = m + 1− i, b = n − a − c − d, c = a, d = a − 1+ j] | 1 ≤ j

≤ 2i − 1}, 1 ≤ i ≤ m.

Then the k′-th series of four integers [a, b, c, d] is decided by the k′-th pair
[i, j] (i = 1, 2, . . . ,m, j = 1, 2, . . . , 2i − 1). From Lemma 17, there exists
an O(1) time algorithm that computes the k′-th pair [i, j].

(ii) Otherwise: We set k′ := k′ −m2. From definition, we have B(a, c) = {[a, b =
a + l, c = a + h, d = n − a − b − c] | 1 ≤ l ≤ 4m + 1− 3a − c}, 1 ≤ h ≤
4m − 4a, 1 ≤ a ≤ m − 1. In order to convert a series [a, b, c, d] into a triplet
of three integers [i, j, l], we set i := m − a and j := 4i − h + 1. Then B(a, c)
is rewritten as

B(a, c) = {[a = m − i, b = a + l, c = a + 4i − j + 1, d = n − a − b − c] |
1 ≤ l ≤ j}, 1 ≤ j ≤ 4i, 1 ≤ i ≤ m − 1.

Then the k′-th series of four integers [a, b, c, d] is decided by the k′-th triplet
[i, j, l] (i = 1, 2, . . . ,m − 1, j = 1, 2, . . . , 4i, l = 1, 2, . . . , j). In the follow-
ing, we consider how to compute the k′-th triplet [i, j, l].

We define the set of triplets of three integers

S(i) := {[i, j, l] | 1 ≤ j ≤ 4i, 1 ≤ l ≤ j}, 1 ≤ i ≤ m − 1.

and then S(i) is partitioned into the following sets, called blocks.

C(i, J, L) := {[i, j, l] | [i, j, l] ∈ S(i), j = 4(J − 1)+ j ′, l
= 4(L − 1)+ l ′ ( j ′, l ′ ∈ [1, 4])}(1 ≤ J ≤ i, 1 ≤ L < J ),

D(i, J ) := {[i, j, l] | [i, j, l] ∈ S(i), j = 4(J − 1)+ j ′, l = 4(J − 1)

+l ′ ( j ′, l ′ ∈ [1, 4])} (1 ≤ J ≤ i).
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For example, S(4) is partitioned into blocks C(4, J, L) (1 ≤ J ≤ 4, 1 ≤ L < 3)
and blocks D(4, J ) (1 ≤ J ≤ 4) (see Fig. 21). For any i ∈ {1, 2, . . . ,m − 1}, J ∈
{1, 2, . . . , i} and L ∈ {1, 2, . . . , J − 1}, we have

|C(i, J, L)| = 16, |D(i, J )| = 10.

Then we have

∑

1≤i≤m−1

∑

1≤J<i

∑

1≤L<J

|C(i, J, L)| = 16
∑

1≤i≤m−1

∑

1≤J<i

∑

1≤L<J

1

= 8m(m − 1)(m − 2)/3.

Hence we consider the following two subcases.

(1) k′ ≤ 8m(m − 1)(m − 2)/3 holds: We compute k1 ≥ 1 and k2 ∈ {1, 2, . . . , 16}
such that k′ = 16(k1 − 1)+ k2, and let [i, j, l] be the k2-th element of the k1-th
block C(i, J, L). Block C(i = I + 1, J, L) which contains [i, j, l] is decided by
[I, J, L] (1 ≤ I ≤ m − 2, 1 ≤ J < I, 1 ≤ L < J ). From Theorem 18, there

(a)

(b) (c)

Fig. 21 a Partitioning of S(4) into C(4, J, L) (1 ≤ J ≤ 4, 1 ≤ L < 3) and D(4, J ) (1 ≤ J ≤ 4).
b C(4, 4, 1). Each triplet in each block denotes [i, j, l]. c D(4, 1). Each triplet in each block denotes [i, j, l]
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exists an O(1) time and space algorithm that computes the k1-th triplet [I, J, L].
From Theorem 14, there exists an O(1) time and space algorithm that computes
the k2-th pair [ j ′, l ′]. Then we can compute the k′-th triplet [i, j, l] in O(1) time
and space.

(2) Otherwise: We compute k1 ≥ 1 and k2 ∈ {1, 2, . . . , 10} such that k′ − 8m
(m − 1)(m − 2)/3 = 10(k1 − 1) + k2, and let [i, j, l] be the k2-th element of
the k1-th block D(i, J ). Block D(i, J ) which contains [i, j, l] is decided by
[i, J ] (1 ≤ i ≤ m − 1, 1 ≤ J ≤ i). From Lemma 17, there exists an O(1) time
and space algorithm that computes the k1-th pair [i, J ]. From Lemma 17, there
exists an O(1) time and space algorithm that computes the k2-th pair [ j ′, l ′].
Then we can compute the k′-th triplet [i, j, l] in O(1) time and space.

Case-2 r ∈ {0, 2, 3}: We treat the series [i, j, k, n] (i, j, k ∈ {1, 2, . . . , n − 1})
separately from the other series [i, j, k, l] (i, j, k, l ∈ {1, 2, . . . , n − 1}). Then we set

Cn,4(k) :=
{

Cn−1,3(k) ∪ {n} if 1 ≤ k ≤ (n−1
3

)
,

Cn−1,4(k −
(n−1

3

)
) if k >

(n−1
3

)
.

The number of recursive calls Cn,p is at most four.

Appendix E Computation processes for Output phase

This section is organized as follows. Sections Appendix E.1 and Appendix E.2 show the
computation process of Output phase at the root and at a non-root vertex, respectively.

Appendix E.1 Computation process at the root

When Output phase starts for generating the k-th stereoisomer of G, first it initializes
l(v) := nil for all v ∈ V . If the root of G is the unicentroid v ∈ V , then it computes
l(v) and ku for each child u of v from a given k. If the root of G is the bicentroid
{v1, v2}, then it computes l(v1), l(v2), kv1 and kv2 . We consider the following two
subcases.

Case-1 The root of G is the unicentroid v ∈ V : We consider the following three
subcases.

(i) v ∈ VC holds: We consider the following four subcases.

(1) v has exactly four children x, y, w and z (see Fig. 18a): In this case, v can be
an asymmetric carbon atom. We consider the following five subcases.

i. No two of Tx , Ty, Tw and Tz are rooted-isomorphic each other: It holds

f ∗(G) = 2 f (x) f (y) f (w) f (z).

We consider the following two subcases.
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• k ≤ f (x) f (y) f (w) f (z) holds: We choose the k-th element of

{{(n(v),+)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z)},

such that Ix is the kx -th element of I(x), Iy is the ky-th element of I(y), Iw is the
kw-th element of I(w), and Iz is the kz-th element of I(z). Then we set l(v) := +
and [kx , ky, kw, kz] := D(k; f (x), f (y), f (w), f (z)).

• Otherwise: We set k̂ = k − f (x) f (y) f (w) f (z) and choose the k̂-th element of

{{(n(v),−)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z)}.

such that Ix is the kx -th element of I(x), Iy is the ky-th element of I(y), Iw is the
kw-th element of I(w), and Iz is the kz-th element of I(z). Then we set l(v) := −
and [kx , ky, kw, kz] := D(k̂; f (x), f (y), f (w), f (z)).

ii. Tx ≈
r

Ty holds and no two of Tx , Ty and Tw are rooted-isomorphic each other:

It holds

f ∗(G) = f (x) f (w) f (z)+ 2

(
f (x)

2

)
f (w) f (z).

We consider the following three subcases.

• k ≤ f (x) f (w) f (z) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y),
Iw ∈ I(w), Iz ∈ I(z), Ix ≈

I
Iy}.

Then we set [kx , kw, kz] = D(k; f (x), f (w), f (z)) and ky := kx .
• f (x) f (w) f (z) < k ≤ f (x) f (w) f (z) + ( f (x)

2

)
f (w) f (z) holds: We set k̂ =

k − f (x) f (w) f (z) and choose the k̂-th element of

{{(n(v),+)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y),
Iw ∈ I(w), Iz ∈ I(z), Ix ≈

I
Iy}.

Then we set l(v) := +, [k′, kw, kz] := D(k̂; ( f (x)
2

)
, f (w), f (z)) and [kx , ky] :=

C f (x),2(k′).
• Otherwise: We set k̂ = k − f (x) f (w) f (z) − ( f (x)

2

)
f (w) f (z) and choose k̂-th

element of

{{(n(v),−)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y),
Iw ∈ I(w), Iz ∈ I(z), Ix ≈

I
Iy}.

Then we set l(v) := − and set [kx , ky, kw, kz] similarly to the case where
f (x) f (w) f (z) < k ≤ f (x) f (w) f (z)+ ( f (x)

2

)
f (w) f (z) holds.
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iii. Tx ≈
r

Ty, Tw ≈
r

Tz and Tx ≈
r

Tw hold: It holds

f ∗(G) =
{

f (x) f (w)+ f (x)

(
f (w)

2

)
+

(
f (x)

2

)
f (w)

}

+2

(
f (x)

2

)(
f (w)

2

)
.

We consider the following five subcases.

• k ≤ f (x) f (w) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z),
Ix ≈

I
Iy, Iw ≈

I
Iz}.

Then we set [kx , kw] := D(k; f (x), f (w)), ky := kx and kz := kw.
• f (x) f (w) < k ≤ f (x) f (w)+ f (x)

( f (w)
2

)
holds: We set k̂ = k − f (x) f (w) and

choose the k̂-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z),
Ix ≈

I
Iy, Iw ≈

I
Iz}.

Then we set [kx , k′] := D(k̂; f (x),
( f (w)

2

)
), ky := kx and [kw, kz] := C f (w),2(k′).

• f (x) f (w)+ f (x)
( f (w)

2

)
< k ≤ f (x) f (w)+ f (x)

( f (w)
2

)+ ( f (x)
2

)
f (w) holds: We

set k̂ = k − f (x) f (w)− f (x)
( f (w)

2

)
and choose the k̂-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z),
Ix ≈

I
Iy, Iw ≈

I
Iz}.

Then we set [k′, kw] := D(k̂; ( f (x)
2

)
, f (w)), [kx , ky] := C f (x),2(k′) and kz := kw.

• f (x) f (w) + f (x)
( f (w)

2

) + ( f (x)
2

)
f (w) < k ≤ f (x) f (w) + f (x)

( f (w)
2

) +
( f (x)

2

)
f (w) + ( f (x)

2

)( f (w)
2

)
holds: We set k̂ = k − f (x) f (w) − f (x)

( f (w)
2

) −
( f (x)

2

)
f (w) and choose the k̂-th element of

{{(n(v),+)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z),
Ix ≈

I
Iy, Iw ≈

I
Iz}.

Then we set l(v) := +, [k′, k′′] := D(k̂; ( f (x)
2

)
,
( f (w)

2

)
), [kx , ky] := C f (x),2(k′)

and [kw, kz] := C f (w),2(k′′).
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• Otherwise: We set k̂ = k − f (x) f (w)− f (x)
( f (w)

2

)− ( f (x)
2

)
f (w)− ( f (x)

2

)( f (w)
2

)

and choose the k̂-th element of

{{(n(v),−)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z),
Ix ≈

I
Iy, Iw ≈

I
Iz}.

Then we set l(v) = − and set [kx , ky, kw, kz] similarly to the case where
f (x) f (w) + f (x)

( f (w)
2

) + ( f (x)
2

)
f (w) < k ≤ f (x) f (w) + f (x)

( f (w)
2

) +
( f (x)

2

)
f (w)+ ( f (x)

2

)( f (w)
2

)
holds.

iv. Tx ≈
r

Ty ≈
r

Tw and Tx ≈
r

Tz hold: It holds

f ∗(G) = f (x)2 f (z)+ 2

(
f (x)

3

)
f (z).

We consider the following three subcases.

• k ≤ f (x)2 f (z) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z),
Ix ≈

I
Iy}.

Then we set [kx , kw, kz] := D(k; f (x), f (x), f (z)) and ky := kx .
• f (x)2 f (z) < k ≤ f (x)2 f (z) + ( f (x)

3

)
f (z) holds: We set k̂ = k − f (x)2 and

choose the k̂-th element of

{{(n(v),+)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z),
Ix ≈

I
Iy ≈

I
Iw ≈

I
Ix }.

Then we set l(v) := + and [k′, kz] = D(k̂; ( f (x)
3

)
, f (z)) and [kx , ky, kw] :=

C f (x),3(k′).
• Otherwise: We set k̂ = k − f (x)2 and choose the k̂-th element of

{{(n(v),−)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z),
Ix ≈

I
Iy ≈

I
Iw ≈

I
Ix }.

Then we set l(v) := − and set [kx , ky, kw, kz] similarly to the case where
f (x)2 f (z) < k ≤ f (x)2 f (z)+ ( f (x)

3

)
f (z) holds.

v. Tx ≈
r

Ty ≈
r

Tw ≈
r

Tz holds: It holds

f ∗(G) =
{

f (x)2 +
(

f (x)

2

)
+ f (x)

(
f (x)− 1

2

)}
+ 2

(
f (x)

4

)
.
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We consider the following five subcases.

• k ≤ f (x)2 holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z),
Ix ≈

I
Iy ≈

I
Iw}.

Then we set [kx , kz] := D(k; f (x), f (z)), ky := kx and kw := kx .
• f (x)2 < k ≤ f (x)2 + ( f (x)

2

)
holds: We set k̂ = k − f (x)2 and choose the k̂-th

element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z),
Ix ≈

I
Iy ≈

I
Iw ≈

I
Iz}.

Then we set [kx , kw] := C f (x),2(k̂), ky := kx and kz := kw.
• f (x)2 + ( f (x)

2

)
< k ≤ f (x)2 + ( f (x)

2

) + f (x)
( f (x)−1

2

)
holds: We set k̂ = k −

f (x)2 − ( f (x)
2

)
and choose the k̂-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz |
Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈

I
Iy ≈

I
Iw ≈

I
Iz ≈

I
Ix }.

Then we compute p and q such that k = 3p + q (p ≥ 0, q ∈ {1, 2, 3}), and set
[k1, k2, k3] := C f (x),2(p + 1) and

[
kx , ky, kw, kz

] :=
⎧
⎨

⎩

[k1, k1, k2, k3] if q = 1,
[k2, k2, k3, k1] if q = 2,
[k3, k3, k1, k2] if q = 3.

• f (x)2 + ( f (x)
2

) + f (x)
( f (x)−1

2

)
< k ≤ f (x)2 + ( f (x)

2

) + f (x)
( f (x)−1

2

) + ( f (x)
4

)

holds: We set k̂ = k− f (x)2−( f (x)
2

)− f (x)
( f (x)−1

2

)
and choose the k̂-th element of

{{(n(v),+)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z),
No two of Ix , Iy, Iwand Izare rooted-stereoisomorphic}.

Then we set l(v) := + and [kx , ky, kw, kz] := C f (x),4(k̂).
• Otherwise: We set k̂ = k − f (x)2 − ( f (x)

2

) − f (x)
( f (x)−1

2

) − ( f (x)
4

)
and choose

the k̂-th element of

{{(n(v),−)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z),
No two of Ix , Iy, Iwand Izare rooted-stereoisomorphic}.

Then we set l(v) := − and [kx , ky, kw, kz] := C f (x),4(k̂).
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(2) v is joined to a child u by a double bond and children x and y by single bonds
(see Fig. 18b): We consider the following two subcases.

i. Tx ≈
r

Ty holds: It holds

f ∗(G) = g(u) f (x) f (y)+ 2h(u) f (x) f (y).

We consider the following three subcases.

• k ≤ g(u) f (x) f (y) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Iu ∪ Ix ∪ Iy | Iu ∈ Ig(u), Ix ∈ I(x), Iy ∈ I(y)}.

Then we set [ku, kx , ky] := D(k; g(u), f (x), f (y)).
• g(u) f (x) f (y) < k ≤ g(u) f (x) f (y) + h(u) f (x) f (y) holds: We set k̂ = k −

g(u) f (x) f (y) and choose the k̂-th element of

{{(n(v), cis)} ∪ Iu ∪ Ix ∪ Iy | Iu ∈ Ih(u), Ix ∈ I(x), Iy ∈ I(y)}.

Then we set l(v) := cis, [k′, kx , ky] := D(k̂; h(u), f (x), f (y)) and ku := g(u)+
k′.

• Otherwise: We set k̂ = k − g(u) f (x) f (y) − h(u) f (x) f (y) and choose the k̂-th
element of

{{(n(v), trans)} ∪ Iu ∪ Ix ∪ Iy | Iu ∈ Ih(u), Ix ∈ I(x), Iy ∈ I(y)}.

Then we set l(v) := trans and set [ku, kx , ky] similarly to the case where
g(u) f (x) f (y) < k ≤ g(u) f (x) f (y)+ h(u) f (x) f (y) holds.

ii. Tx ≈
r

Ty holds: It holds

f ∗(G) =
{

g(u) f (x)+ h(u) f (x)+ g(u)

(
f (x)

2

)}
+ 2h(u)

(
f (x)

2

)
.

We consider the following five subcases.

• k ≤ f (x)g(u) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Iu ∪ Ix ∪ Iy | Iu ∈ Ig(u), Ix ∈ I(x), Iy ∈ I(y), Ix ≈
I

Iy}.

Then we set [ku, kx ] := D(k; g(u), f (x)) and ky := kx .
• f (x)g(u) < k ≤ f (x)g(u) + f (x)h(u) holds: We set k̂ = k − f (x)g(u) and

choose the k̂-th element of

{{(n(v), nil)} ∪ Iu ∪ Ix ∪ Iy | Iu ∈ Ih(u), Ix ∈ I(x), Iy ∈ I(y), Ix ≈
I

Iy}.

Then we set [k′, kx ] := D(k̂; h(u), f (x)), ku := g(u)+ k′ and ky := kx .
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• f (x)g(u) + f (x)h(u) < k ≤ f (x)g(u) + f (x)h(u) + g(u)
( f (x)

2

)
holds: We set

k̂ = k − f (x)g(u)− f (x)h(u) and choose the k̂-th element of

{{(n(v), nil)} ∪ Iu ∪ Ix ∪ Iy | Iu ∈ Ig(u), Ix ∈ I(x), Iy ∈ I(y), Ix ≈
I

Iy}.

Then we set [ku, k′] := D(k̂; g(u), ( f (x)
2

)
) and [kx , ky] := C f (x),2(k′).

• f (x)g(u)+ f (x)h(u)+ g(u)
( f (x)

2

)
< k ≤ f (x)g(u)+ f (x)h(u)+ g(u)

( f (x)
2

)+
h(u)

( f (x)
2

)
holds: We set k̂ = k − f (x)g(u)− f (x)h(u)− g(u)

( f (x)
2

)
and choose

the k̂-th element of

{{(n(v), cis)} ∪ Iu ∪ Ix ∪ Iy | Iu ∈ Ih(u), Ix ∈ I(x), Iy ∈ I(y), Ix ≈
I

Iy}.

Then we set l(v) := cis, [k′, k′′] := D2(k̂; h(u),
( f (x)

2

)
), ku := g(u) + k′ and

[kx , ky] := C f (x),2(k′′).
• Otherwise: We set k̂ = k − f (x)g(u)− f (x)h(u)− g(u)

( f (x)
2

)− h(u)
( f (x)

2

)
and

choose the k̂-th element of

{{(n(v), trans)} ∪ Iu ∪ Ix ∪ Iy | Iu ∈ Ih(u), Ix ∈ I(x), Iy ∈ I(y), Ix ≈
I

Iy}.

Then we set l(v) := trans and set [ku, kx , ky] similarly to the case where
f (x)g(u)+ f (x)h(u)+ g(u)

( f (x)
2

)
< k ≤ f (x)g(u)+ f (x)h(u)+ g(u)

( f (x)
2

)+
h(u)

( f (x)
2

)
holds.

(3) v is joined to a child x by a triple bond and children y by a single bond (see
Fig. 18c): It holds

f ∗(G) = f (x) f (y).

We output the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y)}.

Then we set [kx , ky] := D(k; f (x), f (y)).

(4) v is joined to a child x and y by double bonds (see Fig. 18d): We consider the
following two subcases.

i. Tx ≈
r

Ty holds: It holds

f ∗(G) = g(x)g(y)+ g(x)h(y)+ h(x)g(y)+ 2h(x)h(y).

We consider the following five subcases.
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• k ≤ g(x)g(y) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ Ig(y)}.

Then we set [kx , ky] := D(k; g(x), g(y)).
• g(x)g(y) < k ≤ g(x)g(y)+g(x)h(y) holds: We set k̂ = k−g(x)g(y) and choose

the k̂-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ Ih(y)}.

Then we set [kx , k′] := D(k̂; g(x), h(y)) and ky := g(y)+ k′.
• g(x)g(y) + g(x)h(y) < k ≤ g(x)g(y) + g(x)h(y) + h(x)g(y) holds: We set

k̂ = k − g(x)g(y)− g(x)h(y) and choose the k̂-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ Ig(y)}.

Then we set [k′, ky] := D(k̂; h(x), g(y)) and kx := g(x)+ k′.
• g(x)g(y) + g(x)h(y) + h(x)g(y) < k ≤ g(x)g(y) + g(x)h(y) + h(x)g(y) +

h(x)h(y) holds: We set k̂ = k− g(x)g(y)− g(x)h(y)− h(x)g(y) and choose the
k̂-th element of

{{(n(v), cis)} ∪ Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ Ih(y)}.

Then we set l(v) := cis, [k′, k′′] := D(k̂; h(x), h(y)), kx := g(x) + k′ and
ky := g(y)+ k′′.

• Otherwise: We set k̂ = k − g(x)g(y) − g(x)h(y) − h(x)g(y) − h(x)h(y) and
choose the k̂-th element of

{{(n(v), trans)} ∪ Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ Ih(y)}.

Then we set l(v) := trans and set [kx , ky] similarly to the case where g(x)g(y)+
g(x)h(y)+ h(x)g(y) < k ≤ g(x)g(y)+ g(x)h(y)+ h(x)g(y)+ h(x)h(y) holds.

ii. Tx ≈
r

Ty holds: It holds

f ∗(G) = g(x)+
(

g(x)

2

)
+ g(x)h(x)+ 2

{
h(x)+

(
h(x)

2

)}
.

We consider the following seven subcases.

• k ≤ g(x) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ Ig(y), Ix ≈
I

Iy}.

Then we set kx := k and ky := k.
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• g(x) < k ≤ g(x) + (g(x)
2

)
holds: We set k̂ = k − g(x) and choose the k̂-th

element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ Ig(y), Ix ≈
I

Iy}.

Then we set [kx , ky] := Cg(x),2(k̂).
• g(x)+ (g(x)

2

)
< k ≤ g(x)+ (g(x)

2

)+ g(x)h(x) holds: We set k̂ = k− g(x)− (g(x)
2

)

and choose the k̂-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ Ih(y)}.

Then we set [kx , k′] := D(k̂; g(x), h(x)) and ky := g(x)+ k′.
• g(x)+ (g(x)

2

)+ g(x)h(x) < k ≤ g(x)+ (g(x)
2

)+ g(x)h(x)+ h(x) holds: We set

k̂ = k − g(x)− (g(x)
2

)− g(x)h(x) and choose the k̂-th element of

{{(n(v), cis)} ∪ Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ Ih(y), Ix ≈
I

Iy}.

Then we set l(v) := cis, kx := g(x)+ k̂ and ky := g(x)+ k̂.
• g(x)+ (g(x)

2

)+ g(x)h(x)+ h(x) < k ≤ g(x)+ (g(x)
2

)+ g(x)h(x)+ 2h(x) holds:

We set k̂ = k − g(x)− (g(x)
2

)− g(x)h(x)− h(x) and choose the k̂-th element of

{{(n(v), trans)} ∪ Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ Ih(y), Ix ≈
I

Iy}.

Then we set l(v) := trans, kx := g(x)+ k̂ and ky := g(x)+ k̂.
• g(x)+(g(x)

2

)+g(x)h(x)+2h(x) < k ≤ g(x)+(g(x)
2

)+g(x)h(x)+2h(x)+(h(x)
2

)

holds: We set k̂ = k − g(x)− (g(x)
2

)− g(x)h(x)− 2h(x) and choose the k̂-th ele-
ment of

{{(n(v), cis)} ∪ Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ Ih(y), Ix ≈
I

Iy}.

Then we set l(v) := cis, [k′, k′′] := Ch(x),2(k̂), kx := g(x) + k′ and ky :=
g(x)+ k′′.

• Otherwise: We set k̂ = k− g(x)− (g(x)
2

)− g(x)h(x)− 2h(x)− (h(x)
2

)
and choose

the k̂-th element of

{{(n(v), trans)} ∪ Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ Ih(y), Ix ≈
I

Iy}.

Then we set l(v) := trans and set [kx , ky] similarly to the case where g(x)+ (g(x)
2

)+
g(x)h(x)+ 2h(x) < k ≤ g(x)+ (g(x)

2

)+ g(x)h(x)+ 2h(x)+ (h(x)
2

)
holds.

(ii) v ∈ VN holds: We consider the following two subcases.
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(1) v has exactly three children x, y andw: We consider the following three subcases.

i. No two of Tx , Ty and Tw are rooted-isomorphic each other: It holds

f ∗(G) = f (x) f (y) f (w).

We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w)}.

Then we set [kx , ky, kw] := D(k; f (x), f (y), f (w)).
ii. Tx ≈

r
Ty and Tx ≈

r
Tw hold: It holds

f ∗(G) = f (x) f (w)+
(

f (x)

2

)
f (w).

We consider the following two subcases.

• k ≤ f (x) f (w) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix ≈
I

Iy}.

Then we set[kx , kw] := D(k; f (x) f (w)) and ky := kx .
• Otherwise: We set k̂ = k − f (x) f (w) and choose the k̂-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix ≈
I

Iy}.

Then we set[k′, kw] := D(k̂; ( f (x)
2

)
, f (w)) and [kx , ky] := C f (x),2(k′).

iii. Tx ≈
r

Ty ≈
r

Tw holds: It holds

f ∗(G) = f (x)2 +
(

f (x)

3

)
.

We consider the following two subcases.

• k ≤ f (x)2 holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix ≈
I

Iy}.

Then we set[kx , kw] := D(k; f (x), f (w)) and ky := kx .
• Otherwise: We set k̂ = k − f (x) f (w) and choose the k̂-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix ≈
I

Iy ≈
I

Iw ≈
I

Ix }.

Then we set[kx , ky, kw] := C f (x),3(k̂).
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(2) v is joined to a child x by a double bond and a child y by a single bond: It holds

f ∗(G) = f (x) f (y).

We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y)}.

Then we set [kx , ky] := D(k; f (x), f (y)).

(iii) v ∈ VO holds: We consider the following two subcases.

(1) Tx ≈
r

Ty holds: It holds

f ∗(G) = f (x) f (y).

We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y)}.

Then we set [kx , ky] := D(k; f (x), f (y)).
(2) Tx ≈

r
Ty holds: It holds

f ∗(G) = f (x)+
(

f (x)

2

)
.

We consider the following two subcases.

• k ≤ f (x) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix ≈
I

Iy}.

Then we set kx := k and ky := k.
• Otherwise: We set k̂ = k − f (x) and choose the k̂-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix ≈
I

Iy}.

Then we set [kx , ky] := C f (x),2(k̂).

Case-2 The root of G is the bicentroid v1, v2 ∈ V : We assume without loss of
generality that n(v1) < n(v2) holds. We consider the following two subcases.

(i) v1, v2 ∈ VC holds, and v1 and v2 are joined by a double bond (see Fig. 19):
We set l(v1), kv1 and kv2 similarly to the Case-1.(i)(4), by interpreting {x, y} as
{v1, v2} and l(v) as l(v1).

(ii) The case other than case (i): We set kv1 and kv2 similarly to the Case-1.(iii), by
interpreting {x, y} as {kv1, kv2}.
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Appendix E.2 Computation process at a non-root vertex v

When Output phase processes a non-root vertex v, it computes l(v) and ku for each
child u of v from a given k.

We consider the following five cases.

Case-1 v ∈ V is a leaf: It holds

f (v) = 1

and we set l(v) := nil.

Case-2 v ∈ VC and v has three children. Let x, y and w be the three children of v
(see Fig. 17a): We consider the following three subcases.

(i) No two of Tx , Ty and Tw are rooted-isomorphic each other: It holds

f (v) = 2 f (x) f (y) f (w).

We consider the following two subcases.

• k ≤ f (x) f (y) f (w) holds: We choose the k-th element of

{{(n(v),+)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w)},

such that Ix is the kx -th element of I(x), Iy is the ky-th element of I(y), and
Iw is the kw-th element of I(w). Then we set l(v) := + and [kx , ky, kw] :=
D(k; f (x), f (y), f (w)).

• k > f (x) f (y) f (w) holds: We set k̂ = k − f (x) f (y) f (w) and choose the k̂-th
element of

{{(n(v),−)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w)},

such that Ix is the kx -th element of I(x), Iy is the ky-th element of I(y), and
Iw is the kw-th element of I(w). Then we set l(v) := − and [kx , ky, kw] :=
D(k̂; f (x), f (y), f (w)).

(ii) Tx ≈
r

Ty and Tx ≈
r

Tw hold: It holds

f (v) = f (x) f (w)+ 2

(
f (x)

2

)
f (w).

We consider the following three subcases.

• k ≤ f (x) f (w) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix ≈
I

Iy}.
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Then we set [kx , kw] := D(k; f (x), f (w)) and ky := kx .
• f (x) f (w) < k ≤ f (x) f (w)+ ( f (x)

2

)
f (w) holds: We set k̂ = k − f (x) f (w) and

choose the k̂-th element of

{{(n(v),+)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix ≈
I

Iy}.

Then we set l(v) := + and [k′, kw] := D(k̂; ( f (x)
2

)
, f (w)), [kx , ky] :=

C f (x),2(k′).
• Otherwise: We set k̂ = k− f (x) f (w)−( f (x)

2

)
f (w) and choose the k̂-th element of

{{(n(v),−)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix ≈
I

Iy}.

Then we set l(v) := − and set [kx , ky, kw] similarly to the case where f (x) f (w) <

k ≤ f (x) f (w)+ ( f (x)
2

)
f (w) holds.

(iii) Tx ≈
r

Ty ≈
r

Tw holds: It holds

f (v) = f (x)2 + 2

(
f (x)

3

)
.

We consider the following three subcases.

• k ≤ f (x)2 holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix ≈
I

Iy}.

Then we set [kx , kw] := D(k; f (x), f (w)) and ky := kx .
• f (x)2 < k ≤ f (x)2 + ( f (x)

3

)
holds: We set k̂ = k − f (x)2 and choose the k̂-th

element of

{{(n(v),+)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix ≈
I

Iy ≈
I

Iw ≈
I

Ix }.

Then we set l(v) := + and [kx , ky, kw] := C f (x),3(k̂).
• Otherwise: We set k̂ = k − f (x)2 − ( f (x)

3

)
and choose the k̂-th element of

{{(n(v),−)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix ≈
I

Iy ≈
I

Iw ≈
I

Ix }.

Then we set l(v) := − and [kx , ky, kw] := C f (x),3(k̂).

Case-3 v ∈ VC and v is joined to two subtrees by single bonds and is joined to one
subtree by a double bond: We consider the following two subcases.

123



J Math Chem (2011) 49:910–970 967

(i) v is joined to its parent by a double bond (see Fig. 17b): We consider the
following two subcases.

(1) If Tx ≈
r

Ty holds, then

f (v) = f (x) f (y)

holds. We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y)}.

Then we set [kx , ky] := D(k; f (x), f (y)).
(2) If Tx ≈

r
Ty holds, then

f (v) = f (x)+
(

f (x)

2

)

holds. We consider the following two subcases.

• k ≤ f (x) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix ≈
I

Iy}.

Then we set kx := k and ky := k.
• Otherwise: We set k̂ = k − f (x) and choose the k̂-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix ≈
I

Iy}.

Then we set [kx , ky] := C f (x),2(k̂).

(ii) v is joined to a child x of v by a double bond (see Fig. 17c):

f (v) = g(x) f (y)+ 2h(x) f (y)

holds and we consider the following three subcases.

• k ≤ g(x) f (y) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ I(y)}.

Then we set [kx , ky] := D(k; g(x), f (y)).
• g(x) f (y) < k ≤ g(x) f (y) + h(x) f (y) holds: We set k̂ = k − g(x) f (y) and

choose the k̂-th element of

{{(n(v), cis)} ∪ Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ I(y)}.

Then we set l(v) := cis and [kx , ky] := D(k̂; h(x), f (y)).
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• Otherwise: We set k̂ = k − g(x) f (y)− h(x) f (y) and choose the k̂-th element of

{{(n(v), trans)} ∪ Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ I(y)}.

Then we set l(v) := trans and [kx , ky] := D(k̂; h(x), f (y)).

Case-4 v ∈ VC and v is joined to its parent by a double bond and its child y by a
double bond (see Fig. 17d): It holds

f (v) = f (y).

We choose the k-th element of

{{(n(v), nil)} ∪ Iy | I ∈ I(y)}.

Then and we set ky := k.

Case-5 The case other than Cases-1,2,3 and 4: We consider the following two sub-
cases.

(i) v ∈ V has exactly one child x : It holds

f (v) = f (x).

We choose the k-th element of

{{(n(v), nil)} ∪ Ix | I ∈ I(x)}.

Then we set kx := k.
(ii) v ∈ V − VC has exactly two children x and y: We consider the following two

subcases.

(1) Tx ≈
r

Ty holds; It holds

f (v) = f (x) f (y).

We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y)}.

Then we set [kx , ky] := D(k; f (x), f (y)).
(2) Tx ≈

r
Ty holds; It holds

f (v) = f (x)+
(

f (x)

2

)
.

We consider the following two subcases.
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• k ≤ f (x) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix ≈
I

Iy}.

Then we set kx := k and ky := k.
• otherwise: We set k̂ = k − f (x) and choose the k̂-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix ≈
I

Iy}.

Then we set [kx , ky] := C f (x),2(k̂).

Appendix F Extension of the types of stereoisomers

About double bonds, it is known that not only a double bond between ‘two carbon
atoms’ but also a double bond between ‘two nitrogen atoms’ or ‘a carbon atom and
a nitrogen atom’ induces two different three-dimensional structures. Our model and
algorithm can be extended to treat these types of stereoisomers by extending the notion
of carbon circuit. We consider that a double bond between ‘two nitrogen atoms’ or ‘a
carbon atom and a nitrogen atom’ forms a circuit and consider its orientation, similarly
to a double bond between ‘two carbon atoms’.

Here we write the way of computing f (v), g(v) and h(v) when v ∈ VN is not the
centroid and adjacent to its parent or child by a double bond. By adding these cases,
our counting algorithm is extended to treat more types of stereoisomers.

Case-N1 v ∈ VN, v is joined to its parent by a double bond (see Fig. 22a): Then v
and its child v′ is joined by a single bond. It holds that

Ig(v) = φ, Ih(v) = I(v′), I(v) = {I ∪ {(n(v), nil)} | I ∈ Ig(v) ∪ Ih(v)},

Fig. 22 Graph structures
around a non-root vertex v

(a) (b)
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and we have

g(v) = 0, h(v) = f (v′), f (v) = g(v)+ h(v).

Case-N2 v ∈ VN, v is joined to its child by a single bond (see Fig. 22b): Then v and
its child v′ is joined by a double bond. It holds that

Ig(v) = Ig(v
′), Ih(v) = Ih(v

′),
I(v) = {I ∪ {(n(v), nil)} | I ∈ Ig(v)}

∪{I ∪ {(n(v), cis)}, I ∪ {(n(v), trans)} | I ∈ Ih(v)},

and we have

g(v) = g(v′), h(v) = h(v′), f (v) = g(v)+ 2h(v).
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